高数证明
展开全部
令t=x-π/2,dx=dt
∫(0,π) sin^nxdx=∫(-π/2,π/2) sin^n(t+π/2)dt
=∫(-π/2,π/2) cos^ntdt
=2*∫(0,π/2) cos^ntdt
∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) cos^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) [cos^nx-sin^nx]dx
令x=π/2-t,dx=-dt
∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) [cos^nx-sin^nx]dx
=2*∫(π/2,0) [cos^n(π/2-t)-sin^n(π/2-t)](-dt)
=2*∫(0,π/2) [sin^nt-cos^nt]dt
=-2*∫(0,π/2) [cos^nt-sin^nt]dt
所以2*∫(0,π/2) [sin^nx-cos^nx]dx=0
即∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx=0
∫(0,π) sin^nxdx=2*∫(0,π/2) sin^nxdx
∫(0,π) sin^nxdx=∫(-π/2,π/2) sin^n(t+π/2)dt
=∫(-π/2,π/2) cos^ntdt
=2*∫(0,π/2) cos^ntdt
∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) cos^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) [cos^nx-sin^nx]dx
令x=π/2-t,dx=-dt
∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx
=2*∫(0,π/2) [cos^nx-sin^nx]dx
=2*∫(π/2,0) [cos^n(π/2-t)-sin^n(π/2-t)](-dt)
=2*∫(0,π/2) [sin^nt-cos^nt]dt
=-2*∫(0,π/2) [cos^nt-sin^nt]dt
所以2*∫(0,π/2) [sin^nx-cos^nx]dx=0
即∫(0,π) sin^nxdx-2*∫(0,π/2) sin^nxdx=0
∫(0,π) sin^nxdx=2*∫(0,π/2) sin^nxdx
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询