已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0)。(1)求椭圆C的方程;

(2)E、F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值。【第一问已求出,椭圆C的方程为x^2/4+y^2/... (2)E、F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值。
【第一问已求出,椭圆C的方程为x^2/4+y^2/3=1;做第二问吧,请写明主要过程.】
展开
良驹绝影
2011-10-14
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
设直线AE的斜率是k,则AE:y-(3/2)=k(x-1)【直线AE的斜率肯定存在】、
AF:y-(3/2)=(-k)(x-1)。
将AE代入椭圆,化简,得:(3+4k²)x²-4k(2k-3)x+[(2k-3)²-12]=0,此方程有一根是x=1,则另一根是点E的横坐标:Ex=[4k²-12k-3]/(3+4k²)。同理,Fx=[4k²+12k-3]/(3+4k²)【用-k替代Ex中的k即可】
另外,KEF=[Ey-Fy]/[Ex-Fx]=[k(Ex+Fx-2)]/(Ex-Fx)=1/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式