展开全部
不是四舍五入,偶数五入奇数五舍。
而是四舍六入五成双。是一种比较精确比较科学的计数保留法,是一种数字修约规则。
对于位数很多的近似数,当有效位数确定后,其后面多余的数字应该舍去,只保留有效数字最末一位,这种修约(舍入)规则是【四舍六入五成双】。
规则如下:
1. 被修约的数字小于5时,该数字舍去;
2. 被修约的数字大于5时,则进位;
3. 被修约的数字等于5时,要看5前面的数字,若是奇数则进位,若是偶数则将5舍掉,即修约后末尾数字都成为偶数;若5的后面还有不为“0”的任何数,则此时无论5的前面是奇数还是偶数,均应进位。
举例,用上述规则对下列数据保留3位有效数字:
9.8249=9.82,(4舍)
9.82671=9.83,(6入)
9.8350=9.84,(5后无有效数字,前面3奇数,舍5进1)
9.8351 =9.84,(5后面有有效数字,舍5进1)
9.8250=9.82,(5后面无有效数字,前面2偶数,舍5不进)
9.82501=9.83,(5后面有有效数字,舍5进1)
而是四舍六入五成双。是一种比较精确比较科学的计数保留法,是一种数字修约规则。
对于位数很多的近似数,当有效位数确定后,其后面多余的数字应该舍去,只保留有效数字最末一位,这种修约(舍入)规则是【四舍六入五成双】。
规则如下:
1. 被修约的数字小于5时,该数字舍去;
2. 被修约的数字大于5时,则进位;
3. 被修约的数字等于5时,要看5前面的数字,若是奇数则进位,若是偶数则将5舍掉,即修约后末尾数字都成为偶数;若5的后面还有不为“0”的任何数,则此时无论5的前面是奇数还是偶数,均应进位。
举例,用上述规则对下列数据保留3位有效数字:
9.8249=9.82,(4舍)
9.82671=9.83,(6入)
9.8350=9.84,(5后无有效数字,前面3奇数,舍5进1)
9.8351 =9.84,(5后面有有效数字,舍5进1)
9.8250=9.82,(5后面无有效数字,前面2偶数,舍5不进)
9.82501=9.83,(5后面有有效数字,舍5进1)
展开全部
四舍六入五成双
四舍六入五成双
四舍六入五成双是一种比较精确比较科学的计数保留法,是一种数字修约规则。
对于位数很多的近似数,当有效位数确定后,其后面多余的数字应该舍去,只保留有效数字最末一位,这种修约(舍入)规则是“四舍六入五成双”,也即“4舍6入5凑偶”这里“四”是指≤4 时去去,"六"是指≥6时进上,"五"指的是根据5后面的数字来定,当5后有数时,舍5入1;当5后无有效数字时,需要分两种情况来讲:
①5前为奇数,舍5入1;
②5前为偶数,舍5不进。(0是最小的偶数) 具体规则如下:
1. 被修约的数字等于或小于4时,该数字舍去;
2. 被修约的数字等于或大于6时,则进位;
3. 被修约的数字等于5时,要看5前面的数字,若是奇数则进位,若是偶数则将5舍掉,即修约后末尾数字都成为偶数;若5的后面还有不为“0”的任何数,则此时无论5的前面是奇数还是偶数,均应进位。
举例,用上述规则对下列数据保留3位有效数字: 9.8249=9.82, 9.82671=9.83 9.8350=9.84, 9.8351 =9.84 9.8250=9.82, 9.82501=9.83 从统计学的角度,“四舍六入五成双”比“四舍五入”要科学,在大量运算时,它使舍入后的结果误差的均值趋于零,而不是像四舍五入那样逢五就入,导致结果偏向大数,使得误差产生积累进而产生系统误差,“四舍六入五成双”使测量结果受到舍入误差的影响降到最低。 例如:1.15+1.25+1.35+1.45=5.2,若按四舍五入取一位小数计算: 1.2+1.3+1.4+1.5=5.4 按“四舍六入五成双”计算,1.2+1.2+1.4+1.4=5.2,舍入后的结果更能反映实际结果。 尤其是在化学领域应用广泛,在计算“分析化学”、“化学平衡”时经常需要使用“四舍六入五成双”这种较精确的修约方法。这样得到的结果较精确,而且运算量相对来说也不大,十分有用。
四舍六入五成双
四舍六入五成双是一种比较精确比较科学的计数保留法,是一种数字修约规则。
对于位数很多的近似数,当有效位数确定后,其后面多余的数字应该舍去,只保留有效数字最末一位,这种修约(舍入)规则是“四舍六入五成双”,也即“4舍6入5凑偶”这里“四”是指≤4 时去去,"六"是指≥6时进上,"五"指的是根据5后面的数字来定,当5后有数时,舍5入1;当5后无有效数字时,需要分两种情况来讲:
①5前为奇数,舍5入1;
②5前为偶数,舍5不进。(0是最小的偶数) 具体规则如下:
1. 被修约的数字等于或小于4时,该数字舍去;
2. 被修约的数字等于或大于6时,则进位;
3. 被修约的数字等于5时,要看5前面的数字,若是奇数则进位,若是偶数则将5舍掉,即修约后末尾数字都成为偶数;若5的后面还有不为“0”的任何数,则此时无论5的前面是奇数还是偶数,均应进位。
举例,用上述规则对下列数据保留3位有效数字: 9.8249=9.82, 9.82671=9.83 9.8350=9.84, 9.8351 =9.84 9.8250=9.82, 9.82501=9.83 从统计学的角度,“四舍六入五成双”比“四舍五入”要科学,在大量运算时,它使舍入后的结果误差的均值趋于零,而不是像四舍五入那样逢五就入,导致结果偏向大数,使得误差产生积累进而产生系统误差,“四舍六入五成双”使测量结果受到舍入误差的影响降到最低。 例如:1.15+1.25+1.35+1.45=5.2,若按四舍五入取一位小数计算: 1.2+1.3+1.4+1.5=5.4 按“四舍六入五成双”计算,1.2+1.2+1.4+1.4=5.2,舍入后的结果更能反映实际结果。 尤其是在化学领域应用广泛,在计算“分析化学”、“化学平衡”时经常需要使用“四舍六入五成双”这种较精确的修约方法。这样得到的结果较精确,而且运算量相对来说也不大,十分有用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
偶数五入奇数五舍?没听过,惭愧,也没有听明白
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
5是偶数吗?!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询