高等数学下 求曲线的切线和法平面方程
3个回答
展开全部
2x^2+3y^2+z^2-9 = 0
法向量 (4x, 6y, 2z)
在点 M(1, -1, 2)处 n1 =(2, -3, 2)
3x^2+y^2-z^2 = 0
法向量 (6x, 2y, -2z)
在点 M(1, -1, 2)处 n2 =(3, -1, -2)
切线方向向量 t = n1 × n2 = (8, 10, 7)
切线方程 (x-1)/8 = (y+1)/10 = (z-2)/7
法平面方程 8(x-1)+10(y+1)+7(z-2) = 0
即 8x+10y+7z =12
根据空间曲线的表达形式,有以下两种求法:
1.参数曲线形式:分别求x,y,z对参数t的倒数,将该点的值带入,就得到该点的切向量,根据点向式和点法式写出切线和法平面。
2.两平面交线的形式:根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
2x^2+3y^2+z^2-9 = 0
法向量 (4x, 6y, 2z),
在点 M(1, -1, 2)处 n1 =(2, -3, 2);
3x^2+y^2-z^2 = 0
法向量 (6x, 2y, -2z),
在点 M(1, -1, 2)处 n2 =(3, -1, -2);
切线方向向量 t = n1 × n2 = (8, 10, 7)
切线方程 (x-1)/8 = (y+1)/10 = (z-2)/7
法平面方程 8(x-1)+10(y+1)+7(z-2) = 0
即 8x+10y+7z =12
法向量 (4x, 6y, 2z),
在点 M(1, -1, 2)处 n1 =(2, -3, 2);
3x^2+y^2-z^2 = 0
法向量 (6x, 2y, -2z),
在点 M(1, -1, 2)处 n2 =(3, -1, -2);
切线方向向量 t = n1 × n2 = (8, 10, 7)
切线方程 (x-1)/8 = (y+1)/10 = (z-2)/7
法平面方程 8(x-1)+10(y+1)+7(z-2) = 0
即 8x+10y+7z =12
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
去百度搜下就可以了,同学,不比你在这儿得来的答案清楚啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询