
求高数大神解答,谢谢😃
1个回答
展开全部
x^2+y^2+z^2=2∫(x->y) f(x+y-t) dt
let
u= x+y-t
du = -dt
t=x, u = y
t=y, u=x
∫(x->y) f(x+y-t) dt
=∫(y->x) f(u) (-du)
=∫(x->y) f(t) dt
x^2+y^2+z^2=2∫(x->y) f(x+y-t) dt
x^2+y^2+z^2=2∫(x->y) f(t) dt
2x + 2z. ∂z/∂x = -2f(x)
z. ∂z/∂x = -x-f(x)
Similarly
x^2+y^2+z^2=2∫(x->y) f(x+y-t) dt
x^2+y^2+z^2=2∫(x->y) f(t) dt
2y + 2z. ∂z/∂y = 2f(y)
z. ∂z/∂y = -y+f(y)
z. (∂z/∂x +∂z/∂y)
=-x-f(x) -y+f(y)
let
u= x+y-t
du = -dt
t=x, u = y
t=y, u=x
∫(x->y) f(x+y-t) dt
=∫(y->x) f(u) (-du)
=∫(x->y) f(t) dt
x^2+y^2+z^2=2∫(x->y) f(x+y-t) dt
x^2+y^2+z^2=2∫(x->y) f(t) dt
2x + 2z. ∂z/∂x = -2f(x)
z. ∂z/∂x = -x-f(x)
Similarly
x^2+y^2+z^2=2∫(x->y) f(x+y-t) dt
x^2+y^2+z^2=2∫(x->y) f(t) dt
2y + 2z. ∂z/∂y = 2f(y)
z. ∂z/∂y = -y+f(y)
z. (∂z/∂x +∂z/∂y)
=-x-f(x) -y+f(y)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询