分式函数求值域时,如果分子最高次数比分母的大 该怎么求?
1个回答
展开全部
看两个例题,用判别式法或换元法,利用基本不等式。
1.求Y=(2x^2+2X+5)/(X^2+X+1)的值域。
【判别式法】
由原式可得:(y-2)x^2+(y-2)x+(y-5)=0
当y=2时,方程无解;
当y≠2时,△=(y-2)^2-4(y-2)(y-5)
=-3y^2+24y-36≥0
即y^2-8y+12≤0
解得:2≤y≤6
所以函数的值域为(2,6]
2.求函数Y=(2x²-x+1)/(2x-1),(x>1/2)的值域
【换元法】
设2x-1=t>0,则x=(t+1)/2.
函数可化为y=[(t+1)^2/2-(t+1)/2+1]/t
=1/2*[(t^2+t+2)/t]
=1/2*[t+2/t+1]……利用基本不等式
≥1/2*[2√2+1]= √2+1/2.
.(t=√2时取到等号,此时x=(√2+1)/2 )
所以函数值域是[√2+1/2,+∞)。
1.求Y=(2x^2+2X+5)/(X^2+X+1)的值域。
【判别式法】
由原式可得:(y-2)x^2+(y-2)x+(y-5)=0
当y=2时,方程无解;
当y≠2时,△=(y-2)^2-4(y-2)(y-5)
=-3y^2+24y-36≥0
即y^2-8y+12≤0
解得:2≤y≤6
所以函数的值域为(2,6]
2.求函数Y=(2x²-x+1)/(2x-1),(x>1/2)的值域
【换元法】
设2x-1=t>0,则x=(t+1)/2.
函数可化为y=[(t+1)^2/2-(t+1)/2+1]/t
=1/2*[(t^2+t+2)/t]
=1/2*[t+2/t+1]……利用基本不等式
≥1/2*[2√2+1]= √2+1/2.
.(t=√2时取到等号,此时x=(√2+1)/2 )
所以函数值域是[√2+1/2,+∞)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询