回归直线方程的计算方法

 我来答
胡八一通
2018-10-03 · TA获得超过4015个赞
知道答主
回答量:10
采纳率:0%
帮助的人:1806
展开全部

要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,  和  如图三所示,且  称为样本点的中心。

扩展资料

回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。

离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.

总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。

参考资料:百度百科-回归直线方程

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
赵德柱
高粉答主

2018-09-15 · 新鲜事早知道!
赵德柱
采纳数:45 获赞数:64920

向TA提问 私信TA
展开全部

计算方法:

回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。

数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,  和  如图三所示,且  称为样本点的中心。

①式:

扩展资料

方法

以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。

对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

1、用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。

2、用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。

3、最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

参考资料:百度百科:最小二乘法

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
流蓉白0V
2018-09-27 · TA获得超过25.5万个赞
知道小有建树答主
回答量:116
采纳率:100%
帮助的人:4.1万
展开全部

回归直线方程的计算方法:

要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。

即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,  和  如图所示,且  称为样本点的中心。

扩展资料:

直线方程的表达式:

1:一般式:Ax+By+C=0(A、B不同时为0)【适用于所有直线】

 , 

A1/A2=B1/B2≠C1/C2←→两直线平行

A1/A2=B1/B2=C1/C2←→两直线重合

横截距a=-C/A

纵截距b=-C/B

2:点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】

表示斜率为k,且过(x0,y0)的直线

3:截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】

表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线

4:斜截式:y=kx+b【适用于不垂直于x轴的直线】

表示斜率为k且y轴截距为b的直线。

参考资料:百度百科-回归直线方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2018-09-19 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:175万
展开全部

要确定回归直线方程,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。

数学表达:Yi-y^=Yi-a-bXi,总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。

扩展资料

回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。

在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。图中最前面的式子式叫做Y对x的回归直线方程,相应的直线叫做回归直线,b叫做回归系数。

参考资料:百度百科线性回归方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
妳微笑是很美BX303
2016-05-12 · TA获得超过136个赞
知道答主
回答量:59
采纳率:100%
帮助的人:8.9万
展开全部

要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:yi-y^=yi-a-bxi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(yi-a-bxi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,和如图三所示,且称为样本点的中心。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式