已知数列{an}满足a1=1,a(n+1)=2an+n+1,设bn=an+n+2

证明数列{bn}是等比数列,2.设数列{an}的前n项和为Sn,求an和Sn... 证明数列{bn}是等比数列,2.设数列{an}的前n项和为Sn,求an和Sn 展开
百度网友6803cbce2
2011-10-15 · TA获得超过1368个赞
知道小有建树答主
回答量:434
采纳率:0%
帮助的人:532万
展开全部
a(n+1)=2an+n+1
an=2a(n-1)+n
a(n+1)-an=2(an-a(n-1))+1
a(n+1)-an+1=2(an-a(n-1))+2
a(n+1)-an+1=2(an-a(n-1)+1)
a(n+1)-an+1/an-a(n-1)+1=2
又bn=an+n+2=a(n+1)-an+1
bn-1=a(n-1)+n+1=an-a(n-1)+1
bn/bn-1=a(n+1)-an+1/an-a(n-1)+1=2
b1=a1+1+2=5
bn为首项为5,公比为2的比数列
bn=5*2^(n-1)
an+n+2=5*2^(n-1)
an=5*2^(n-1)-(n+2)
sn转化为求一个等比数列一个等差数列的和
sn=5[2^0+2^1+……2^(n-1)]-[3+4+……+(n+2)]
=5*2^n-n*(n+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式