展开全部
设t=cosu,则
dt=-sinudu
t=0时,u=π/2
t=1时,u=0
原式=-∫(π/2→0)u·√(1-cosu)·sinudu
=∫(0→π/2)u·√2·sin(u/2)·sinudu
=√2/2·∫(0→π/2)u·[cos(u/2)-cos(3u/2)]du
【此处应用积化和差公式】
=√2·∫(0→π/2)u·d[sin(u/2)-1/3·sin(3u/2)]
=√2·u·[sin(u/2)-1/3·sin(3u/2)] |(0→π/2)
-√2·∫(0→π/2)[sin(u/2)-1/3·sin(3u/2)]du
=π/3+2√2·[cos(u/2)-1/9·cos(3u/2)] |(0→π/2)
=π/3+20/9
dt=-sinudu
t=0时,u=π/2
t=1时,u=0
原式=-∫(π/2→0)u·√(1-cosu)·sinudu
=∫(0→π/2)u·√2·sin(u/2)·sinudu
=√2/2·∫(0→π/2)u·[cos(u/2)-cos(3u/2)]du
【此处应用积化和差公式】
=√2·∫(0→π/2)u·d[sin(u/2)-1/3·sin(3u/2)]
=√2·u·[sin(u/2)-1/3·sin(3u/2)] |(0→π/2)
-√2·∫(0→π/2)[sin(u/2)-1/3·sin(3u/2)]du
=π/3+2√2·[cos(u/2)-1/9·cos(3u/2)] |(0→π/2)
=π/3+20/9
追答
还没写完就发出去了,
最后答案是
π/2+20/9-16/9·√2
最后答案是
π/3+20/9-16/9·√2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设x=arccost
t=cosx∈[0,1]
x∈[π/2,0]
J=∫x·√(1-cosx)d cosx
=∫x·sinx·√2·sin(x/2) dx
=4∫x/2·2sin(x/2)·cos(x/2)·√2·sin(x/2)d(x/2)
=8√2∫m·(sinm)^2d(sinm)
=8√2 /3 ∫m d(sinm)^3
=8√2 /3 m·(sinm)^3-8√2 /3∫(sinm)^3dm
后面的积分化成
∫(1-(cosm)^2)·sinm dm
=-∫(---------)d cosm
最后代入全部积分区间
注意m∈(π/4,0)
从π/4积分到0
t=cosx∈[0,1]
x∈[π/2,0]
J=∫x·√(1-cosx)d cosx
=∫x·sinx·√2·sin(x/2) dx
=4∫x/2·2sin(x/2)·cos(x/2)·√2·sin(x/2)d(x/2)
=8√2∫m·(sinm)^2d(sinm)
=8√2 /3 ∫m d(sinm)^3
=8√2 /3 m·(sinm)^3-8√2 /3∫(sinm)^3dm
后面的积分化成
∫(1-(cosm)^2)·sinm dm
=-∫(---------)d cosm
最后代入全部积分区间
注意m∈(π/4,0)
从π/4积分到0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询