高等数学第二章试题求解
展开全部
1. f'(0) = lim (x->0) [ f(x) - f(0) ] /(x-0) 用定义,f(0)=0
= lim (x->0) (x-1)(x-2)......(x-10)
= (-1)^10 * 10! = 10!
2. 函数在x=0可导,必连续 => a+b = f(1) =1
用定义求, f '- (1) = lim(x->1-) (x²-1)/(x-1) = 2;
f '+(1) = lim(x->1+) [(ax+b) -(a+b)] /(x-1) = a;
于是 a=2, b=-1
= lim (x->0) (x-1)(x-2)......(x-10)
= (-1)^10 * 10! = 10!
2. 函数在x=0可导,必连续 => a+b = f(1) =1
用定义求, f '- (1) = lim(x->1-) (x²-1)/(x-1) = 2;
f '+(1) = lim(x->1+) [(ax+b) -(a+b)] /(x-1) = a;
于是 a=2, b=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询