如图,在三角形ABC中,AB=AC=a,BC=b,∠A=100°点D在AC上∠ABD=30°则AD的长

 我来答
匿名用户
2016-05-23
展开全部
试题分析:根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解:
∵AB=AC,∠A=30°,∴∠ABC=∠ACB= (180°﹣∠A)= (180°﹣30°)=75°.
∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD.
∴∠CBD=180°﹣2∠ACB=180°﹣2×75°="30°." ∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式