初中数学题:如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证△DBE是等腰三角形。
2013-01-20
展开全部
证明:∵BA=BC
∴∠A=∠C
∵DF⊥AC
∴∠C+∠FEC=90°,∠A+∠D=90°
∴∠FEC=∠D
∵∠FEC=∠BED
∴∠BED=∠D
∴△DBE是等腰三角形
∴∠A=∠C
∵DF⊥AC
∴∠C+∠FEC=90°,∠A+∠D=90°
∴∠FEC=∠D
∵∠FEC=∠BED
∴∠BED=∠D
∴△DBE是等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考点:等腰三角形的判定与性质.
专题:证明题.
分析:首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.
解答:证明:在△ABC中,BA=BC,
∵BA=BC,
∴∠A=∠C,
∵DF⊥AC,
∴∠C+∠FEC=90°,
∠A+∠D=90°,
∴∠FEC=∠D,
∵∠FEC=∠BED,
∴∠BED=∠D,
∴BD=BE,
即△DBE是等腰三角形.
点评:此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.
专题:证明题.
分析:首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.
解答:证明:在△ABC中,BA=BC,
∵BA=BC,
∴∠A=∠C,
∵DF⊥AC,
∴∠C+∠FEC=90°,
∠A+∠D=90°,
∴∠FEC=∠D,
∵∠FEC=∠BED,
∴∠BED=∠D,
∴BD=BE,
即△DBE是等腰三角形.
点评:此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询