在三角形ABC中,AC=BC,<ACB=90,点D为AC中点。E为线段DC上任意一点,将线段DE绕D逆时针旋转90,得到线段DF
7个回答
展开全部
CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
把楼上这位人兄的再贴一遍,十分赞同
展开全部
CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
证明:延长DF交AB于M
因为∠FDC=∠DCB=90°
所以DM平行于CB
又因为D为AC中点
所以DM为△ABC中位线,AD=CD=1/2AC
所以DM=1/2BC
因为AB=AC
所以DM=CD
因为DE=DF
所以CE=FM
因为DM平行于BC
所以∠AMD=∠ABC=45°
所以∠FMH=135°
因为∠DEF=45°
所以∠CEF=135°
所以∠FMH=∠CEF
所以∠FMH=∠FEC
因为∠DFE+∠EFC+∠CFH+∠HFM=180°且∠DFE=45°,∠CFH=90°
所以∠EFC+∠HFM=45°
因为∠ECF+∠EFC=∠DEF=45°
所以∠EFC+∠HFM=∠ECF+∠EFC
所以∠FMH=∠ECF
在△FEC和△HMF中
∠FMH=∠ECF
CE=FM
∠FMH=∠CEF
所以△FEC全等于△HMF
所以CF=FH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长DF交AB于点G
∠CDG=∠ACB=90
DG‖BC
DG为中位线
DG=1/2BC=1/2AC(AB=AC)
DC=1/2AC
DG=DC
DF=DE
DG-DF=DC-DE
FG=EC(1)
∠CDG=90,DE=DF
∠DEF=∠DFE=45
∠CEF=180-∠DEF=135
同理∠DGH=135
所以∠DGH=∠CEF(2)
∠ACF+∠CFD=90
∠GFH+∠CFD=90
所以∠ACF=∠GFH(3)
由(1)(2)(3)
△CEF≌△FGH
CF=FH
(2)结论不变,CF=FH
∠CDG=∠ACB=90
DG‖BC
DG为中位线
DG=1/2BC=1/2AC(AB=AC)
DC=1/2AC
DG=DC
DF=DE
DG-DF=DC-DE
FG=EC(1)
∠CDG=90,DE=DF
∠DEF=∠DFE=45
∠CEF=180-∠DEF=135
同理∠DGH=135
所以∠DGH=∠CEF(2)
∠ACF+∠CFD=90
∠GFH+∠CFD=90
所以∠ACF=∠GFH(3)
由(1)(2)(3)
△CEF≌△FGH
CF=FH
(2)结论不变,CF=FH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询