求讲有理数加减混合运算
展开全部
整数
整数距离0的数值,称为绝对值。0的绝对值说明为0,负数的绝对值是它的相反数,正整数的绝对值是它本身。整数还包括正数、负数和0。
正数和负数相加
同号相加,取相同的符号,把两数相加并加上符号。异号相加,取绝对值较大数的符号,用较大绝对值减去较小绝对值。
(5) + (+1) = (+6)
(-6) + (-1) = (-7)
(+7) + (-6) = (+1)
整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为“有理数”。(Rational number)
有理数加减混合运算、有理数的巧算
1.有理数加减统一成加法的意义:
对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的算式是几个正数或负数的和的形式,我们把这样的式子叫做代数和。
2.有理数加减混合运算的方法和步骤:
(1)运用减法法则将有理数混合运算中的减法转化为加法。
(2)运用加法法则,加法交换律,加法结合律简便运算。
有理数乘法法则
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24 (2)任何数字同0相乘,都得0. 例;0×1=0
(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数
(4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)*0=0
除法也差不多,总之就一点 先乘除后加减
附:
一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,正有理数。整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。 在有理数中,不是无限不循环小数的小数就是分数。
p.s.这里有些题,看看吧
(1) (-9)-(-13)+(-20)+(-2)
(2) 3+13-(-7)/6
(3) (-2)-8-14-13
(4) (-7)*(-1)/7+8
(5) (-11)*4-(-18)/18
(6) 4+(-11)-1/(-3)
(7) (-17)-6-16/(-18)
(8) 5/7+(-1)-(-8)
(9) (-1)*(-1)+15+1
(10) 3-(-5)*3/(-15)
(11) 6*(-14)-(-14)+(-13)
(12) (-15)*(-13)-(-17)-(-4)
(13) (-20)/13/(-7)+11
(14) 8+(-1)/7+(-4)
(15) (-13)-(-9)*16*(-12)
(16) (-1)+4*19+(-2)
(17) (-17)*(-9)-20+(-6)
(18) (-5)/12-(-16)*(-15)
(19) (-3)-13*(-5)*13
(20) 5+(-7)+17-10
(21) (-10)-(-16)-13*(-16)
(22) (-14)+4-19-12
(23) 5*13/14/(-10)
(24) 3*1*17/(-10)
(25) 6+(-12)+15-(-15)
(26) 15/9/13+(-7)
(27) 2/(-10)*1-(-8)
(28) 11/(-19)+(-14)-5
(29) 19-16+18/(-11)
(30) (-1)/19+(-5)+1
(31) (-5)+19/10*(-5)
(32) 11/(-17)*(-13)*12
(33) (-8)+(-10)/8*17
(34) 7-(-12)/(-1)+(-12)
(35) 12+12-19+20
(36) (-13)*(-11)*20+(-4)
(37) 17/(-2)-2*(-19)
(38) 1-12*(-16)+(-9)
(39) 13*(-14)-15/20
(40) (-15)*(-13)-6/(-9)
(41) 15*(-1)/12+7
(42) (-13)+(-16)+(-14)-(-6)
(43) 14*12*(-20)*(-13)
(44) 17-9-20+(-10)
(45) 12/(-14)+(-14)+(-2)
(46) (-15)-12/(-17)-(-3)
(47) 6-3/9/(-8)
(48) (-20)*(-15)*10*(-4)
(49) 7/(-2)*(-3)/(-14)
(50) 13/2*18*(-7)
1 -18
2 103/6
3 -37
4 9
5 -43
6 -(20/3)
7 -(199/9)
8 54/7
9 17
10 2
11 -83
12 216
13 1021/91
14 27/7
15 -1741
16 73
17 127
18 -(2885/12)
19 842
20 5
21 214
22 -41
23 -(13/28)
24 -(51/10)
25 24
26 -(268/39)
27 39/5
28 -(372/19)
29 15/11
30 -(77/19)
31 -(29/2)
32 1716/17
33 -(117/4)
34 -17
35 25
36 2856
37 59/2
38 184
39 -(731/4)
40 587/3
41 23/4
42 -37
43 43680
44 -22
45 -(118/7)
46 -(192/17)
47 145/24
48 -12000
49 -(3/4)
50 -819
自己做做看吧,看看是否懂了
整数距离0的数值,称为绝对值。0的绝对值说明为0,负数的绝对值是它的相反数,正整数的绝对值是它本身。整数还包括正数、负数和0。
正数和负数相加
同号相加,取相同的符号,把两数相加并加上符号。异号相加,取绝对值较大数的符号,用较大绝对值减去较小绝对值。
(5) + (+1) = (+6)
(-6) + (-1) = (-7)
(+7) + (-6) = (+1)
整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为“有理数”。(Rational number)
有理数加减混合运算、有理数的巧算
1.有理数加减统一成加法的意义:
对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的算式是几个正数或负数的和的形式,我们把这样的式子叫做代数和。
2.有理数加减混合运算的方法和步骤:
(1)运用减法法则将有理数混合运算中的减法转化为加法。
(2)运用加法法则,加法交换律,加法结合律简便运算。
有理数乘法法则
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24 (2)任何数字同0相乘,都得0. 例;0×1=0
(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数
(4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)*0=0
除法也差不多,总之就一点 先乘除后加减
附:
一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,正有理数。整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。 在有理数中,不是无限不循环小数的小数就是分数。
p.s.这里有些题,看看吧
(1) (-9)-(-13)+(-20)+(-2)
(2) 3+13-(-7)/6
(3) (-2)-8-14-13
(4) (-7)*(-1)/7+8
(5) (-11)*4-(-18)/18
(6) 4+(-11)-1/(-3)
(7) (-17)-6-16/(-18)
(8) 5/7+(-1)-(-8)
(9) (-1)*(-1)+15+1
(10) 3-(-5)*3/(-15)
(11) 6*(-14)-(-14)+(-13)
(12) (-15)*(-13)-(-17)-(-4)
(13) (-20)/13/(-7)+11
(14) 8+(-1)/7+(-4)
(15) (-13)-(-9)*16*(-12)
(16) (-1)+4*19+(-2)
(17) (-17)*(-9)-20+(-6)
(18) (-5)/12-(-16)*(-15)
(19) (-3)-13*(-5)*13
(20) 5+(-7)+17-10
(21) (-10)-(-16)-13*(-16)
(22) (-14)+4-19-12
(23) 5*13/14/(-10)
(24) 3*1*17/(-10)
(25) 6+(-12)+15-(-15)
(26) 15/9/13+(-7)
(27) 2/(-10)*1-(-8)
(28) 11/(-19)+(-14)-5
(29) 19-16+18/(-11)
(30) (-1)/19+(-5)+1
(31) (-5)+19/10*(-5)
(32) 11/(-17)*(-13)*12
(33) (-8)+(-10)/8*17
(34) 7-(-12)/(-1)+(-12)
(35) 12+12-19+20
(36) (-13)*(-11)*20+(-4)
(37) 17/(-2)-2*(-19)
(38) 1-12*(-16)+(-9)
(39) 13*(-14)-15/20
(40) (-15)*(-13)-6/(-9)
(41) 15*(-1)/12+7
(42) (-13)+(-16)+(-14)-(-6)
(43) 14*12*(-20)*(-13)
(44) 17-9-20+(-10)
(45) 12/(-14)+(-14)+(-2)
(46) (-15)-12/(-17)-(-3)
(47) 6-3/9/(-8)
(48) (-20)*(-15)*10*(-4)
(49) 7/(-2)*(-3)/(-14)
(50) 13/2*18*(-7)
1 -18
2 103/6
3 -37
4 9
5 -43
6 -(20/3)
7 -(199/9)
8 54/7
9 17
10 2
11 -83
12 216
13 1021/91
14 27/7
15 -1741
16 73
17 127
18 -(2885/12)
19 842
20 5
21 214
22 -41
23 -(13/28)
24 -(51/10)
25 24
26 -(268/39)
27 39/5
28 -(372/19)
29 15/11
30 -(77/19)
31 -(29/2)
32 1716/17
33 -(117/4)
34 -17
35 25
36 2856
37 59/2
38 184
39 -(731/4)
40 587/3
41 23/4
42 -37
43 43680
44 -22
45 -(118/7)
46 -(192/17)
47 145/24
48 -12000
49 -(3/4)
50 -819
自己做做看吧,看看是否懂了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询