等差数列有关性质
在等差数列有关性质中有以下2个:1:S(2N-1)=(2N-1)an(这个是什么性质?怎么推的?一般用在哪里啊?)2:若n为偶数,则S偶-S奇=1/2nd.若n为奇数,则...
在等差数列有关性质中有以下2个:
1:S(2N-1)=(2N-1)an (这个是什么性质?怎么推的?一般用在哪里啊?)
2:若n为偶数,则S偶-S奇=1/2 nd.
若n为奇数,则S奇-S偶=a中(中间项)
(这个性质什么意思。如何推。怎么用呢?)
3:若某数列的前N项和的公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列(为什么从第二项起成等差数列了?)
请解释一下,谢谢 展开
1:S(2N-1)=(2N-1)an (这个是什么性质?怎么推的?一般用在哪里啊?)
2:若n为偶数,则S偶-S奇=1/2 nd.
若n为奇数,则S奇-S偶=a中(中间项)
(这个性质什么意思。如何推。怎么用呢?)
3:若某数列的前N项和的公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列(为什么从第二项起成等差数列了?)
请解释一下,谢谢 展开
展开全部
1:本来有求和公式sn=n(a1+an)/2 你把n换成2n-1 则有s(2n-1)=(2n-1)(a1+a(2n-1))/2
由于a1+a(2n-1)=a1+a1+(2n-1-1)d=2(a1+(n-1-1)d)=2a(n-1)
所以 就有s(2n-1)=(2n-1)an
2:这个也同理你可以把奇数项和偶数项分别求和出来再相减就是了:
若n是偶数则有: s偶=(n/2X(a2+an))/2=(n(a2+an))/4 (去半个数变为了n/2)
s奇=(n/2X(a1+a(n-1)))/2=(n(a1+a(n-1)))/4
相减有s偶-s奇=n/4X(d+d)=1/2 nd
若n是奇数是同理 s偶=((n-1)/2X(a2+a(n-1)))/2=((n-1)(a2+a(n-1)))/4=(n-1)X(a1+an)/4
s奇=((n+1)/2X(a1+a(n-1)))/2=((n+1)(a1+an))/4
相减有s奇-s偶=2X(a1+an)/4=(a1+an)/2=中间项 (这里不明白我可以在具体点)
3:其实所有问题你不要急于得出结论,你都要从问题的命题出发,在结合自己掌握的基本公式和定理一推就出来了 高中东西很简单的
证明如下:题目说某数列的前N项和的公式是常数项不为0的二次函数,那么我们就可以假设
sN=An^2+Bn+C 常数项不为0的二次函数 则有:A和C不能为0
我们可以得到aN=sN-s(N-1)=A(2n-1)+B 这里n不能等于1必须大于1,因为N-1要大于等1
即n从2开始取,这显然是个等差数列公式因为a(N+1)-aN=2A A是不等于0的 而且N要大于等于2
那么当n=1时有a1=s1=A+B+C 你可以把a1和aN (N大于2比较下 a1确实不是他们中一个等差项) 我们仔细点可以注意到如果当C=0是那么a1就是等差数列中的一项了,这就是题目为什么说常数项不能为0的原因了。楼主可以自己平时多注意分析下 好多东西在于发现,有条理
由于a1+a(2n-1)=a1+a1+(2n-1-1)d=2(a1+(n-1-1)d)=2a(n-1)
所以 就有s(2n-1)=(2n-1)an
2:这个也同理你可以把奇数项和偶数项分别求和出来再相减就是了:
若n是偶数则有: s偶=(n/2X(a2+an))/2=(n(a2+an))/4 (去半个数变为了n/2)
s奇=(n/2X(a1+a(n-1)))/2=(n(a1+a(n-1)))/4
相减有s偶-s奇=n/4X(d+d)=1/2 nd
若n是奇数是同理 s偶=((n-1)/2X(a2+a(n-1)))/2=((n-1)(a2+a(n-1)))/4=(n-1)X(a1+an)/4
s奇=((n+1)/2X(a1+a(n-1)))/2=((n+1)(a1+an))/4
相减有s奇-s偶=2X(a1+an)/4=(a1+an)/2=中间项 (这里不明白我可以在具体点)
3:其实所有问题你不要急于得出结论,你都要从问题的命题出发,在结合自己掌握的基本公式和定理一推就出来了 高中东西很简单的
证明如下:题目说某数列的前N项和的公式是常数项不为0的二次函数,那么我们就可以假设
sN=An^2+Bn+C 常数项不为0的二次函数 则有:A和C不能为0
我们可以得到aN=sN-s(N-1)=A(2n-1)+B 这里n不能等于1必须大于1,因为N-1要大于等1
即n从2开始取,这显然是个等差数列公式因为a(N+1)-aN=2A A是不等于0的 而且N要大于等于2
那么当n=1时有a1=s1=A+B+C 你可以把a1和aN (N大于2比较下 a1确实不是他们中一个等差项) 我们仔细点可以注意到如果当C=0是那么a1就是等差数列中的一项了,这就是题目为什么说常数项不能为0的原因了。楼主可以自己平时多注意分析下 好多东西在于发现,有条理
展开全部
等差数列的和=(首项+末项)X 项数除2
末项=首项+公差X(项数-1)
首项=末项-公差X(项数-1)
末项=首项+公差X(项数-1)
首项=末项-公差X(项数-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这些个东西参考书上一般都有的啊,。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
。。。。。。。。。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询