已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率
试卷上的题目就是这样的,可为什么我拿1.PF1=PF22.PF2=F1F2算出来都是e=1啊?正确的方法是怎样的?...
试卷上的题目就是这样的,可为什么我拿1.PF1=PF2 2.PF2=F1F2 算出来都是e=1啊?正确的方法是怎样的?
展开
2个回答
展开全部
好吧,刚才想的有问题,重新试试:a>c>0,b>0,所以点P肯定在第一象限,且位于右焦点F2的右上方;
所以,三角形F1PF2肯定是一个钝角三角形,而且可以确定的是,肯定是PF2=F1F2,
所以PF2=2c,PF2^2=(a-c)^2+b^2=4c^2,把b^2=a^2-c^2
即:a^2-2ac+c^2+a^2-c^2=4c^2,整理得:2c^2+ac-a^2=0
同除a^2得:2e^2+e-1=0,十字相乘:(2e-1)(e+1)=0,得:e=1/2
希望能帮到你,如果不懂,请Hi我,祝学习进步!
所以,三角形F1PF2肯定是一个钝角三角形,而且可以确定的是,肯定是PF2=F1F2,
所以PF2=2c,PF2^2=(a-c)^2+b^2=4c^2,把b^2=a^2-c^2
即:a^2-2ac+c^2+a^2-c^2=4c^2,整理得:2c^2+ac-a^2=0
同除a^2得:2e^2+e-1=0,十字相乘:(2e-1)(e+1)=0,得:e=1/2
希望能帮到你,如果不懂,请Hi我,祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询