三角恒等变形的证明方法

 我来答
北vQZ98CB
2016-05-14 · TA获得超过191个赞
知道答主
回答量:194
采纳率:50%
帮助的人:139万
展开全部

首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。利用正弦和余弦的定义及周期性,可证明该公式对任意角成立。于是有 cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB
由此求得以上全部公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式