(请各位大侠不吝赐教)判断下列方程右边所给函数是否为该方程的解?如果是解,是通解还是特解?
(1)y''+y=0,y=C1sinx+C2sinx,(C1,C2为任意常数)(2)(x+y)dx=-xdy,y=(C-x^2)/2X(C为任意常数)请重点回答第一题是什...
(1)y''+y=0,y=C1sinx+C2sinx,(C1,C2为任意常数)
(2)(x+y)dx=-xdy,y=(C-x^2)/2X(C为任意常数)
请重点回答第一题是什么解(应该不符合通解的定义,也不符合特解的定义),第二题的解答过程,谢谢! 展开
(2)(x+y)dx=-xdy,y=(C-x^2)/2X(C为任意常数)
请重点回答第一题是什么解(应该不符合通解的定义,也不符合特解的定义),第二题的解答过程,谢谢! 展开
1个回答
展开全部
解:(1)∵y=C1sinx+C2sinx
∴y'=C1cosx+C2cosx
y''=-C1sinx-C2sinx
=-y
==>y''+y=0
∴y=C1sinx+C2sinx是y''+y=0的解
∵方程y''+y=0通解是y=Asinx+Bcosx (A,B是任意常数)
而y=C1sinx+C2sinx,(C1,C2为任意常数)
=(C1+C2)sinx
这相当于通解中当B=0时的特解
∴y=C1sinx+C2sinx,(C1,C2为任意常数)是y''+y=0的特解;
(2)∵y=(C-x^2)/2x(C为任意常数)
==>2xy=C-x^2
==>2xdy+2ydx=-2xdx
==>xdy+ydx=-xdx
==>xdx+ydx=-xdy
==>(x+y)dx=-xdy
∴y=(C-x^2)/2x (C为任意常数)是(x+y)dx=-xdy的通解。
∴y'=C1cosx+C2cosx
y''=-C1sinx-C2sinx
=-y
==>y''+y=0
∴y=C1sinx+C2sinx是y''+y=0的解
∵方程y''+y=0通解是y=Asinx+Bcosx (A,B是任意常数)
而y=C1sinx+C2sinx,(C1,C2为任意常数)
=(C1+C2)sinx
这相当于通解中当B=0时的特解
∴y=C1sinx+C2sinx,(C1,C2为任意常数)是y''+y=0的特解;
(2)∵y=(C-x^2)/2x(C为任意常数)
==>2xy=C-x^2
==>2xdy+2ydx=-2xdx
==>xdy+ydx=-xdx
==>xdx+ydx=-xdy
==>(x+y)dx=-xdy
∴y=(C-x^2)/2x (C为任意常数)是(x+y)dx=-xdy的通解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询