我想要问一下在什么情况下,积分与微分符号可以交换顺序。 10
5个回答
展开全部
积分与微分符号可以交换顺序的情况如下
设S是区间,G=[a,b]×S。若函数f(x,y)在G中连续,而偏导数f;(x,y)对S中每一个固定的y,在[a,b]上可积,且在G中关于x对y一致连续,则函数
即微分与积分可交换顺序。
扩展资料:
积分具有线性性。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。
微分的中心思想是无穷分割,由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限(函数在dx处的微分)。
参考资料来源:百度百科-积分
参考资料来源:百度百科-微分
展开全部
该函数有连续导数及积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2016-04-28 · 知道合伙人教育行家
关注
展开全部
微分:设函数y=f(x)的自变量有一改变量△x,则函数的对应改变量△y的近似值f~(x)*△x叫做函数y的微分。 (“~”表示导数)
记为 dy=f~(x)△x
可见,微分的概念是在导数概念的基础上得到的。
自变量的微分的等于自变量的改变量,则
将△x用dx代之,则微分写为dy=f~(x)dx
变形为: dy/dx=f~(x)
故导数又叫微商。
积分:它是微分学的逆问题。函数f(x)的全体原函数叫做f(x)的或f(x)dx的不定积分。记作 ∫f(x)dx.
若F(x)是f(x)的原函数,则有
∫f(x)dx=F(x)+C C为任意常数,称为不定积分常数。
对于定积分,它的概念来源不同于不定积分。定积分檎是从极限方面来。是从以“不变”代“变”,以“直”代“曲”求某个变化过程中无限多个微小量的和,最后取极限得到的。所以不定积分与定积分不是仅差一个常数的问题,即使是在计算上仅差一常数,而且运算法则也基本相同。它们之间建立关系是通过“牛顿-莱布尼兹公式”。公式是
非曲直 ∫f(x)dx=F(b)-F(a) 积分下限a,上限b。
记为 dy=f~(x)△x
可见,微分的概念是在导数概念的基础上得到的。
自变量的微分的等于自变量的改变量,则
将△x用dx代之,则微分写为dy=f~(x)dx
变形为: dy/dx=f~(x)
故导数又叫微商。
积分:它是微分学的逆问题。函数f(x)的全体原函数叫做f(x)的或f(x)dx的不定积分。记作 ∫f(x)dx.
若F(x)是f(x)的原函数,则有
∫f(x)dx=F(x)+C C为任意常数,称为不定积分常数。
对于定积分,它的概念来源不同于不定积分。定积分檎是从极限方面来。是从以“不变”代“变”,以“直”代“曲”求某个变化过程中无限多个微小量的和,最后取极限得到的。所以不定积分与定积分不是仅差一个常数的问题,即使是在计算上仅差一常数,而且运算法则也基本相同。它们之间建立关系是通过“牛顿-莱布尼兹公式”。公式是
非曲直 ∫f(x)dx=F(b)-F(a) 积分下限a,上限b。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个在任何一本分析书里面都有,去找一下里面,含参变量的积分的部分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询