怎么理解统计学中「自由度」这个概念
统计学上,自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。自由度通常用于抽样分布中。
扩展资料:
1、自由度在方差中的应用
估计总体的方差(n)时所使用的统计量是样本的标准差s,而s必须用到样本平均数来计算。在抽样完成后已确定,所以大小为n的样本中只要n-1个数确定了,第n个数就只有一个能使样本符合样本平均数的数值。
也就是说,样本中只有n-1个数可以自由变化,只要确定了n-1这个数,方差也就确定了。这里,平均数就相当于一个限制条件,由于加了这个限制条件,样本方差的自由度为n-1。
2、自由度在平均数中的应用
估计总体的平均数(x)时,由于样本中的n个数都是相互独立的,任一个尚未抽出的数都不受已抽出任何数值的影响,所以自由度为n。
在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。
释义
统计学上的自由度是指当以样本的统计量来估计总体的参数时, 样本中独立或能自由变化的自变量的个数,称为该统计量的自由度。
2应用
首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
例如,有一个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在自由确定4、2、5三个数据后, 第四个数据只能是9,否则m≠5。因而这里的自由度υ=n-1=4-1=3。推而广之,任何统计量的自由度υ=n-k(k为限制条件的个数)。
其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。
这个解释,如果把“样本”二字换成“总体”二字也说得过去。
在一个包含n个个体的总体中,平均数为m。知道了n-1个个体时,剩下的一个个体不可以随意变化。为什么总体方差计算,是除以n而不是n-1呢?方差是实际值与期望值之差平方的期望值,所以知道总体个数n时方差应除以n,除以n-1时是方差的一个无偏估计。