如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交△ABC的外接圆D点
如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交△ABC的外接圆D点,连接BD,CD,CE,且∠BDA=60°。(1)求证:△BDE是等边...
如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交△ABC的外接圆D点,连接BD,CD,CE,且∠BDA=60°。
(1)求证:△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是何种特殊四边形,并证明你的猜想。 展开
(1)求证:△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是何种特殊四边形,并证明你的猜想。 展开
10个回答
展开全部
展开全部
(1)证明:∠DBC=∠CAE=∠BAE;∠EBC=∠EBA.
则∠DBC+∠EBA=∠BAE+∠EBA,即∠DBE=∠DEB,DE=DB.
又∠BDA=60°,故:△BDE是等边三角形.(有一个角为60度的等腰三角形是等边三角形)
(2)若∠BDC=120°,则∠CDE=60°.同理可证:DE=DC.
则△DEC为等边三角形,故BD=BE=DE=CE=CD.
即四边形BDCE为有一个内角为60度的菱形.
则∠DBC+∠EBA=∠BAE+∠EBA,即∠DBE=∠DEB,DE=DB.
又∠BDA=60°,故:△BDE是等边三角形.(有一个角为60度的等腰三角形是等边三角形)
(2)若∠BDC=120°,则∠CDE=60°.同理可证:DE=DC.
则△DEC为等边三角形,故BD=BE=DE=CE=CD.
即四边形BDCE为有一个内角为60度的菱形.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:如图:①证明:在圆中∠ACB=∠BDA=60°,
∴∠ABC+∠BAC=120°,
又∵AE、BE是∠BAC与∠ABC的角平分线,
∴∠BED=∠ABE+∠BAE= 1/2(∠ABC+∠BAC)=60°,
∴△BDE是等边三角形.
②四边形BDCE是菱形.
证明:∵∠BDC=120°,∠BDA=60°,
∴∠ABC=∠ADC=60°
∵BE是∠ABC的角平分线,△BDE是等边三角形,
∴BF平分∠EBD,且BC垂直平分DE,
∵∠BDF=∠CDF,∠BFD=∠CFD,DF=DF,
∴△BFD≌△CFD,
∴BF=CF,
∴DE垂直平分BC,
因此四边形BDCE是菱形.
∴∠ABC+∠BAC=120°,
又∵AE、BE是∠BAC与∠ABC的角平分线,
∴∠BED=∠ABE+∠BAE= 1/2(∠ABC+∠BAC)=60°,
∴△BDE是等边三角形.
②四边形BDCE是菱形.
证明:∵∠BDC=120°,∠BDA=60°,
∴∠ABC=∠ADC=60°
∵BE是∠ABC的角平分线,△BDE是等边三角形,
∴BF平分∠EBD,且BC垂直平分DE,
∵∠BDF=∠CDF,∠BFD=∠CFD,DF=DF,
∴△BFD≌△CFD,
∴BF=CF,
∴DE垂直平分BC,
因此四边形BDCE是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:如图:①证明:在圆中∠ACB=∠BDA=60°,
∴∠ABC+∠BAC=120°,
又∵AE、BE是∠BAC与∠ABC的角平分线,
∴∠BED=∠ABE+∠BAE=$\frac{1}{2}$(∠ABC+∠BAC)=60°,
∴△BDE是等边三角形.
②四边形BDCE是菱形.
证明:∵∠BDC=120°,∠BDA=60°,
∴∠ABC=∠ADC=60°
∵BE是∠ABC的角平分线,△BDE是等边三角形,
∴BF平分∠EBD,且BC垂直平分DE,
∵∠BDF=∠CDF,∠BFD=∠CFD,DF=DF,
∴△BFD≌△CFD,
∴BF=CF,
∴DE垂直平分BC,
因此四边形BDCE是菱形.
③解:由∠ABC=∠ADC=60°,∠ACB=∠ADB=60°,AE是∠BAC的角平分线,
可得∠CAD=30°,AD为圆的直径,CD=CE=4,
∴AD=2CD=8,AC=4$\sqrt{3}$
因此S四边形ABDC=2×(4×4$\sqrt{3}$×$\frac{1}{2}$)=16$\sqrt{3}$.
∴∠ABC+∠BAC=120°,
又∵AE、BE是∠BAC与∠ABC的角平分线,
∴∠BED=∠ABE+∠BAE=$\frac{1}{2}$(∠ABC+∠BAC)=60°,
∴△BDE是等边三角形.
②四边形BDCE是菱形.
证明:∵∠BDC=120°,∠BDA=60°,
∴∠ABC=∠ADC=60°
∵BE是∠ABC的角平分线,△BDE是等边三角形,
∴BF平分∠EBD,且BC垂直平分DE,
∵∠BDF=∠CDF,∠BFD=∠CFD,DF=DF,
∴△BFD≌△CFD,
∴BF=CF,
∴DE垂直平分BC,
因此四边形BDCE是菱形.
③解:由∠ABC=∠ADC=60°,∠ACB=∠ADB=60°,AE是∠BAC的角平分线,
可得∠CAD=30°,AD为圆的直径,CD=CE=4,
∴AD=2CD=8,AC=4$\sqrt{3}$
因此S四边形ABDC=2×(4×4$\sqrt{3}$×$\frac{1}{2}$)=16$\sqrt{3}$.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询