展开全部
证明:∵三角形ABC是等边三角形∴∠C=∠BAC=60° AB=AC
∵AE=CD AB=AC ∠BAC=∠C=60°∴△BAE全等于△ACD(SAS)
∴∠ABE=∠CAD ∵∠BPQ是三角形ABP的外角∴∠BPQ=∠ABE+∠BAP
∴∠BPQ=∠CAD+∠BAP=60° ∵BQ⊥AD ∴∠BQD=90° ∴△BQP是Rt△ ∵∠BPQ =60° ∴∠PBQ=30° ∴BP=2PQ
自己写的,给多点分哦!!
∵AE=CD AB=AC ∠BAC=∠C=60°∴△BAE全等于△ACD(SAS)
∴∠ABE=∠CAD ∵∠BPQ是三角形ABP的外角∴∠BPQ=∠ABE+∠BAP
∴∠BPQ=∠CAD+∠BAP=60° ∵BQ⊥AD ∴∠BQD=90° ∴△BQP是Rt△ ∵∠BPQ =60° ∴∠PBQ=30° ∴BP=2PQ
自己写的,给多点分哦!!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:PQ=1/2BP
证明:在△BAE和△ACD中。
∵△ABC是等边三角形
∴∠BAE=∠ACD=60°
AB=AE
AE=CD(已知)
∴△BAE≌△ACD(S.A.S)
则:∠ABE=∠CAD
∵∠BAC=∠BAP+∠CAD=60°
∴∠BAP+∠ABP=60°
那么:∠BPQ=∠BAP+∠ABP=60°(三角形的一个外角等于与它不相邻的两个内角和。
∵BQ⊥AD
∴∠BQP=90°
则:∠PBQ=180°-∠BQP-∠BPQ=180°-90°-60°=30°;
∴PQ=1/2BP(直角三角形中,30°所对应的直角边等于斜边的一半。)
证明:在△BAE和△ACD中。
∵△ABC是等边三角形
∴∠BAE=∠ACD=60°
AB=AE
AE=CD(已知)
∴△BAE≌△ACD(S.A.S)
则:∠ABE=∠CAD
∵∠BAC=∠BAP+∠CAD=60°
∴∠BAP+∠ABP=60°
那么:∠BPQ=∠BAP+∠ABP=60°(三角形的一个外角等于与它不相邻的两个内角和。
∵BQ⊥AD
∴∠BQP=90°
则:∠PBQ=180°-∠BQP-∠BPQ=180°-90°-60°=30°;
∴PQ=1/2BP(直角三角形中,30°所对应的直角边等于斜边的一半。)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询