设f(x)为定义在R上以3为周期的奇函数,若f(x)>1,f(2)=(2a-3)/(a+1),则求a的取值范围

 我来答
starchen060
2011-10-19 · TA获得超过186个赞
知道答主
回答量:59
采纳率:0%
帮助的人:36.8万
展开全部
∵函数f(x)的周期为3
∴f(2)=f(2-3)=f(-1)=(2a-3)/(a+1).
又∵f(x)是定义在R上的奇函数
就有 -f(x)=f(-x)
∴f(-1)=-f(1)<1
即(2a-3)/(a+1)<1
移项,整理可得-1<a<4

标准解题格式

手机版:
因为周期为3
所以f(2)=f(2-3)=f(-1)=(2a-3)/(a+1).
又因为f(x)是定义在R上的奇函数
就有 -f(x)=f(-x)
所以f(-1)=-f(1)<1
即(2a-3)/(a+1)<1
移项,整理可得-1<a<4

starchen060手稿 复制可耻
望LZ采纳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式