求 lim(x→∞)[(x^3+x^2+x^1+1)^(1/3) - x] 的极限。需要详细步骤。谢谢!
展开全部
解:原式=lim(x->∞){[(x³+x²+x+1)-x³]/[(x³+x²+x+1)^(2/3)+x(x³+x²+x+1)^(1/3)+x²]} (分子有理化)
=lim(x->∞){(x²+x+1)/[(x³+x²+x+1)^(2/3)+x(x³+x²+x+1)^(1/3)+x²]}
=lim(x->∞){(1+1/x+1/x²)/[(1+1/x+1/x²+1/x³)^(2/3)+(1+1/x+1/x²+1/x³)^(1/3)+1]}
=(1+0+0)/(1+1+1)
=1/3。
=lim(x->∞){(x²+x+1)/[(x³+x²+x+1)^(2/3)+x(x³+x²+x+1)^(1/3)+x²]}
=lim(x->∞){(1+1/x+1/x²)/[(1+1/x+1/x²+1/x³)^(2/3)+(1+1/x+1/x²+1/x³)^(1/3)+1]}
=(1+0+0)/(1+1+1)
=1/3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询