多项式的n次方展开公式
10个回答
展开全部
根据二项式定理,多项式的n次方展开公式,如下图所示:
其中二项式定理如下图所示:
扩展资料:
二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
参考资料:百度百科_二项式定理
推荐于2017-11-17
展开全部
多项式的n次方展开公式
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多项式的n次方展开公式
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。
其中C是组合符号,(n,0)的意思是下n上0。
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。
其中C是组合符号,(n,0)的意思是下n上0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多项式的n次方展开公式
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个, 这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。 其中C是组合符号,(n,0)的意思是下n上0。
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个, 这个公式叫做二项式定理,右边的多项式叫做(a+b)n次展开式。 其中C是组合符号,(n,0)的意思是下n上0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
$(a_1+a_2+\cdots+a_n)^n=\displaystyle\sum_{k_1,\cdots,k_n}\frac{n!}{k_1!k_2!\cdotsk_n!}a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}$,其中$k_1,k_2,\cdots,k_n\in \{0,1,2,\cdots,n\}, \displaystyle\sum_{i=1}^nk_i=n$.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询