求解两道数学题目,有关微积分的。

第一题∫f(ax+b)dx=1/a∫f(u)du(a≠0,u=ax+b),请问这个结果是怎么推算出来的?第二题设∫f(x)dx=Insinx+C,求∫xf(1-x^2)d... 第一题
∫f(ax+b)dx=1/a∫f(u)du (a≠0,u=ax+b),请问这个结果是怎么推算出来的?
第二题
设∫f(x)dx=Insinx+C,求∫xf(1-x^2)dx
展开
yhpwan
2011-10-18 · TA获得超过520个赞
知道答主
回答量:200
采纳率:0%
帮助的人:245万
展开全部
这是第一换元积分法,令u=ax+b,du=adx,dx=1/adu
∫f(ax+b)dx=1/a∫f(u)du
2)令u=1-x^2,du=-2xdx, xf(1-x^2)dx= -1/2f(u)du
∫xf(1-x^2)dx=1/2∫f(1-x^2)d(x^2)=-1/2∫f(1-x^2)d(1-x^2)=(-1/2)lnsin(1-x^2)+C
昭君性别男
2011-10-18 · TA获得超过192个赞
知道小有建树答主
回答量:72
采纳率:0%
帮助的人:98.7万
展开全部
1. ∫f(u)du=∫f(ax+b)d(ax+b)=a∫f(ax+b)dx,所以∫f(ax+b)dx=1/a∫f(u)du
2. ∫xf(1-x^2)dx=1/2∫f(1-x^2)d(x^2)=-1/2∫f(1-x^2)d(1-x^2)=(-1/2)lnsin(1-x^2)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
kezhang911
2011-10-18 · TA获得超过280个赞
知道答主
回答量:70
采纳率:0%
帮助的人:70万
展开全部
设ax+b=u,du=adx f(ax+b)dx=1/af(u)du

1-x^2=u,du=-2xdx, xf(1-x^2)dx= -1/2f(u)du 所以积分=-1/2lnsin(1-x^2)+c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式