求当n趋近于正无穷时,1*3*…*(2n-1)/2*4*…*2n的极限 40

 我来答
帐号已注销
2021-10-27 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

1,因为最高次的n的系数一直相同。

= 1/2 * 3/4 * 5/6 * 7/8 * 9/10 * ... * (2n-1)/(2n)

=0 ( 因为每一项都小于1,并且有无数项)

1*3*…*(2n-1)/2*4*…*2n = 1/2 * 3/4 ...* (2n-1)/2n < 2/3 * 4/5 .... 2n/(2n+1)。

所以(1/2*3/4...*2n-1/2n)^2 < (1/2*3/4...*2n-1/2n) * (2/3 * 4/5 .... 2n/(2n+1)) = 1/(2n+1)。

1/2*3/4...*2n-1/2n<根号下1/(2n+1)->0。

故极限为0。

几何学:

无限维的空间常用在几何学及拓扑学中,尤其是在分类空间,也就是Eilenberg−MacLane空间。常见的例子包括无限维的复射影空间K(Z,2),以及无限维的实射影空间K(Z/2Z,1)。

分形的结构可以重复的放大,分形可以无限次的放大,但不会变的圆滑,而且仍维持原有的结构,分形的周长是无限的,有些的面积无限,但有些的面积却是有限。像科赫曲线就是有无限周长和有限面积的例子。

百度网友3327840
2011-10-21 · TA获得超过290个赞
知道答主
回答量:73
采纳率:0%
帮助的人:27万
展开全部
1*3*…*(2n-1)/2*4*…*2n = 1/2 * 3/4 ...* (2n-1)/2n < 2/3 * 4/5 .... 2n/(2n+1)
所以(1/2*3/4...*2n-1/2n)^2 < (1/2*3/4...*2n-1/2n) * (2/3 * 4/5 .... 2n/(2n+1)) = 1/(2n+1)
1/2*3/4...*2n-1/2n<根号下1/(2n+1)->0,
故极限为0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
探花As
2011-10-21 · TA获得超过9663个赞
知道大有可为答主
回答量:2656
采纳率:77%
帮助的人:1104万
展开全部

见图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bossusa
2011-10-21 · TA获得超过4416个赞
知道大有可为答主
回答量:3579
采纳率:0%
帮助的人:1048万
展开全部
= 1/2 * 3/4 * 5/6 * 7/8 * 9/10 * ... * (2n-1)/(2n)
=0 ( 因为每一项都小于0,并且有无数项)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
隔着糖纸看星星2c
2021-10-14
知道答主
回答量:1
采纳率:0%
帮助的人:437
引用bossusa的回答:
= 1/2 * 3/4 * 5/6 * 7/8 * 9/10 * ... * (2n-1)/(2n)
=0 ( 因为每一项都小于0,并且有无数项)
展开全部
= 1/2 * 3/4 * 5/6 * 7/8 * 9/10 * ... * (2n-1)/(2n)
=0 ( 因为每一项都小于1,并且有无数项)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式