
说明一元二次方程x平方-(m-1)x+m-3=0 的根的情况
1个回答
展开全部
△=(M-1)²-4(M-3)
=M²-2M+1-4M+12
=M²-6M+13
=M²-6M+9+4
=(M-3)²+4
因为(M-3)²≥4,所以整个式子≥4,为正数
因此方程有两个不相等的实数根
=M²-2M+1-4M+12
=M²-6M+13
=M²-6M+9+4
=(M-3)²+4
因为(M-3)²≥4,所以整个式子≥4,为正数
因此方程有两个不相等的实数根
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询