△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上。
展开全部
1)证明:
∵△AOB和△COD均为等腰直角三角形
∴CO=DO,AO=BO,∠COD=∠A0B=90°
∴∠AOC+∠AOD=∠DOB+∠AOD=90°
∴∠COD=∠DOB
∴△AOC≌△COD(SAS)
(2)解:
由(1)△AOC≌△BOD得:
AC=BD=2,∠CAO=∠DBO
∵∠OAB+∠DBO=90°
∴∠CAO+∠OAB=90°
∵AD=1,利用勾股定理得
CD=√5
∵△AOB和△COD均为等腰直角三角形
∴CO=DO,AO=BO,∠COD=∠A0B=90°
∴∠AOC+∠AOD=∠DOB+∠AOD=90°
∴∠COD=∠DOB
∴△AOC≌△COD(SAS)
(2)解:
由(1)△AOC≌△BOD得:
AC=BD=2,∠CAO=∠DBO
∵∠OAB+∠DBO=90°
∴∠CAO+∠OAB=90°
∵AD=1,利用勾股定理得
CD=√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)证明:
∵△AOB和△COD均为等腰直角三角形
∴CO=DO,AO=BO,∠COD=∠A0B=90°
∴∠AOC+∠AOD=∠DOB+∠AOD=90°
∴∠COD=∠DOB
∴△AOC≌△COD(SAS)
(2)解:
由(1)△AOC≌△BOD得:
AC=BD=2,∠CAO=∠DBO
∵∠OAB+∠DBO=90°
∴∠CAO+∠OAB=90°
∵AD=1,利用勾股定理得
CD=√5
∵△AOB和△COD均为等腰直角三角形
∴CO=DO,AO=BO,∠COD=∠A0B=90°
∴∠AOC+∠AOD=∠DOB+∠AOD=90°
∴∠COD=∠DOB
∴△AOC≌△COD(SAS)
(2)解:
由(1)△AOC≌△BOD得:
AC=BD=2,∠CAO=∠DBO
∵∠OAB+∠DBO=90°
∴∠CAO+∠OAB=90°
∵AD=1,利用勾股定理得
CD=√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-27
展开全部
不知道
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询