解一下这个题,
1个回答
展开全部
解:
2f(x)+x²f(1/x)=(3x³-x²+4x+3)/(x+1) ①
将x换成1/x,则1/x换成x
2f(1/x)+(1/x²)f(x)=[3(1/x)³-(1/x)²+4/x +3)/(1/x +1)
f(x)+2x²f(1/x)=(3x³+4x²-x+3)/(x+1) ②
①×2-②
3f(x)=(3x³-6x²+9x+3)/(x+1)
f(x)=(x³-2x²+3x+1)/(x+1)
分式有意义,x+1≠0,x≠-1
f(x)的解析式为:
f(x)=(x³-2x²+3x+1)/(x+1) ,(x≠-1)
2f(x)+x²f(1/x)=(3x³-x²+4x+3)/(x+1) ①
将x换成1/x,则1/x换成x
2f(1/x)+(1/x²)f(x)=[3(1/x)³-(1/x)²+4/x +3)/(1/x +1)
f(x)+2x²f(1/x)=(3x³+4x²-x+3)/(x+1) ②
①×2-②
3f(x)=(3x³-6x²+9x+3)/(x+1)
f(x)=(x³-2x²+3x+1)/(x+1)
分式有意义,x+1≠0,x≠-1
f(x)的解析式为:
f(x)=(x³-2x²+3x+1)/(x+1) ,(x≠-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询