高数连续性问题
设函数f(x)对于一切x1,x2适合等式f(x1+x2)=f(x1)+f(x2)且f(x)在x=0处连续,证明f(x)在任意点处连续能解释一下这个吗?...
设函数f(x)对于一切x1,x2适合等式f(x1+x2)=f(x1)+f(x2)且f(x)在x=0处连续,证明f(x)在任意点处连续
能解释一下这个吗? 展开
能解释一下这个吗? 展开
2个回答
展开全部
做过好多次了:
令x1=x2=0得
f(0)=2f(0)=> f(0)=0
f(x+△x)=f(x)+f(△x)
所以△x->0, △y=[f(x+△x)-f(x)]=f(△x)
而函数在x=0处连续,所以当△x->0时
lim △y=limf(△x)=f(0)=0
根据连续的定义可知函数f(x)在任意点xo连续
令x1=x2=0得
f(0)=2f(0)=> f(0)=0
f(x+△x)=f(x)+f(△x)
所以△x->0, △y=[f(x+△x)-f(x)]=f(△x)
而函数在x=0处连续,所以当△x->0时
lim △y=limf(△x)=f(0)=0
根据连续的定义可知函数f(x)在任意点xo连续
追问
能解释下这个过程吗?
追答
你哪一部不明白
第一部就是根据条件f(x1+x2)=f(x1)+f(x2)得到
第2部lim(△x->0)[f(x)+f(△x)]
=lim(△x->0)f(x)+lim(△x->0)f(△x)
这个前一部分和△x无关,所以直接得极限为f(x)
而后一部分因为函数在0点连续所以lim(△x->0)f(△x)=f(0)
所以结果为f(x)+f(0)=f(x+0)=f(x)这里又是用了条件f(x1+x2)=f(x1)+f(x2)
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
上海桦明教育科技有限公司(以下简称桦明教育)是一家经上海市场监督管理部门依法批准,教育主管部门备案监管的专业化、合法化的教育培训单位,华明教育上海教学场地位于杨浦区凤城路101号。 学校软硬件设施齐全,拥有27间标准化敦室(其中两间大教室分...
点击进入详情页
本回答由上海桦明教育科技提供
展开全部
由连续定义和在x=0连续有
limx->0+ f(x)=limx->0- f(x)=f(0)
对任意y
而lim x->y+ f(x)=lim x->0+ f(x+y)=lim x->0+ f(x)+f(y)
f(y)是一个固定数
=f(y)+lim x->0+ f(x)=f(y)+ f(0)=f(y)
又
=f(y)+lim x->0- f(x) =lim x->0+ f(x)+f(y)
=lim x->0- f(x+y)=lim x->y- f(x)
所以左右极限在x=y除相等且等于f(y)
而y任意,所以f(x)在任意点连续
limx->0+ f(x)=limx->0- f(x)=f(0)
对任意y
而lim x->y+ f(x)=lim x->0+ f(x+y)=lim x->0+ f(x)+f(y)
f(y)是一个固定数
=f(y)+lim x->0+ f(x)=f(y)+ f(0)=f(y)
又
=f(y)+lim x->0- f(x) =lim x->0+ f(x)+f(y)
=lim x->0- f(x+y)=lim x->y- f(x)
所以左右极限在x=y除相等且等于f(y)
而y任意,所以f(x)在任意点连续
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询