arctanx+arctan1/x等于什么? 恒等嘛?

 我来答
小小芝麻大大梦
高粉答主

2019-02-22 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:956万
展开全部

arctanx+arctan1/x=π/2,恒等。

证明方法:

设f(x)=arctanx+arctan(1/x)

则求导之后:

f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)'

=1/(1+x^2) + [-1/(1+x^2)]=0

因此f(x)是一个常数,令x=1代入,则f(x)=f(1)=arctan1+arctan1=π/4 +π/4 =π/2。

扩展资料:

正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。

若tanA=1.9/5,则 A=arctan1.9/5;若tanB=5/1.9,则B=arctan5/1.9。

y=arctanx的函数相关:

(1)定义域:R。

(2)值 域:(-π/2,π/2)。

(3)奇偶性:奇函数。

(4)周期性:不是周期函数

(5)单调性:(-∞,﹢∞)单调递增。

生活家马先生
2019-02-21 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.4万
展开全部

arctanx+arctan1/x=π/2,恒等。

证明方法:

设f(x)=arctanx+arctan(1/x)

则求导之后:

f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)'

=1/(1+x^2) + [-1/(1+x^2)]

=0

因此f(x)是一个常数,令x=1代入,则f(x)=f(1)=arctan1+arctan1=π/4 +π/4 =π/2

扩展资料

求导数方法:

1、直接法:由高阶导数的定义逐步求高阶导数。

一般用来寻找解题方法。

2、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
姜心1998
高粉答主

推荐于2019-09-29 · 关注我不会让你失望
知道小有建树答主
回答量:377
采纳率:100%
帮助的人:11.2万
展开全部
arctanx+arctan1/x=π/2,是一个恒等式。
证明如下:
用到的公式:tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(arctana)=a

所以有tan(arctanx+arctan1/x)

=(tanarctanx+tanarctan1/x)/(1-tanarctanx*tanarctan1/x)

=(x+1/x)/(1-x*1/x)

=(x+1/x)/0

=无穷大

=tanπ/2

x>0

0<arctanx<π x<π所以arctanx+arctan1/x=π/2成立
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
独自倚花红cs
推荐于2019-08-15 · TA获得超过2231个赞
知道答主
回答量:40
采纳率:0%
帮助的人:5797
展开全部
arctanx+arctan1/x=π/2。恒等。
一、方法一:用导数
设f(x)=arctanx+arctan(1/x)
则f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)'
=1/(1+x^2) + [-1/(1+x^2)]

=0
因此f(x)是一个常数,令x=1代入
则f(x)=f(1)=arctan1+arctan1=π/4 +π/4 =π/2
二、方法二:用正切
tan(arctanx+arctant1/x)
=(tanarctanx+tanarctan1/x)/(1-tanarctanx*tanarctan1/x)
=(x+1/x)/0
因为分母不存在
所以arctanx+arctant1/x=π/2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
顺眼还灵巧的小饼干J
2023-07-25 · TA获得超过270个赞
知道小有建树答主
回答量:2316
采纳率:100%
帮助的人:92.6万
展开全部
arctanx+arctan1/x并不等于什么恒等式,而是一个不定值。
当x>0时,arctanx+arctan1/x= arctanx+arctan(1/x)
当x<0时,arctanx+arctan1/x= π-arctan(-x)+arctan(1/x)
因此,对于不同的x,这个式子的值可能是不同的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式