高中一元二次不等式求详解!
(1)4x^2-1≥0(2)x-x^2+6<0(3)x^2+x+3≥0(4)x^2+x-6<0(5)2x^2+3x-6<3x^2+x-1(6)-x^2-3x+10≥0...
(1)4x^2-1≥0 (2)x-x^2+6<0
(3) x^2+x+3≥0 (4) x^2+x-6<0 (5) 2x^2+3x-6<3x^2+x-1 (6) -x^2-3x+10≥0 展开
(3) x^2+x+3≥0 (4) x^2+x-6<0 (5) 2x^2+3x-6<3x^2+x-1 (6) -x^2-3x+10≥0 展开
3个回答
展开全部
解:(1)4x²-1≧0
(2x+1)(2x-1)≧0
得出x≧1/2;x≦-1/2
解题思路:当不等式为>或者≧时,结果大于大的,小于小的。
(2)x-x²+6<0
-(x²-x-6)<0
x²-x-6>0 改变正负号要改变不等号方向
(x-3)(x+2)>0
得出x>3 or x<-2
(3)x²+x+3≧0
配方得(x²+2x1/2x+1/4)-1/4+3≧0
(x+1/2)²+11/4≧0
因为任何数的平方都大於零,所以,x∈R
(4)x²+x-6<0
十字相乘法得(x+3)(x-2)<0
-3<x<2
当不等号方向为<或≦时,大於小得,小于大的。
(5)2x²+3x-6<3x²+x-1
2x²+3x-6-3x²-x+1<0
-x²+2x-5<0
x²-2x+5>0
(x-1)²+4>0
所以 x∈R
(6)-x²-3x+10≧0
x²+3x-10≦0
(x+5)(x-2)≦0
2≦x≦-5
(2x+1)(2x-1)≧0
得出x≧1/2;x≦-1/2
解题思路:当不等式为>或者≧时,结果大于大的,小于小的。
(2)x-x²+6<0
-(x²-x-6)<0
x²-x-6>0 改变正负号要改变不等号方向
(x-3)(x+2)>0
得出x>3 or x<-2
(3)x²+x+3≧0
配方得(x²+2x1/2x+1/4)-1/4+3≧0
(x+1/2)²+11/4≧0
因为任何数的平方都大於零,所以,x∈R
(4)x²+x-6<0
十字相乘法得(x+3)(x-2)<0
-3<x<2
当不等号方向为<或≦时,大於小得,小于大的。
(5)2x²+3x-6<3x²+x-1
2x²+3x-6-3x²-x+1<0
-x²+2x-5<0
x²-2x+5>0
(x-1)²+4>0
所以 x∈R
(6)-x²-3x+10≧0
x²+3x-10≦0
(x+5)(x-2)≦0
2≦x≦-5
展开全部
1 4x²-1>=0 x²>=1/4 1/2<x 或x<-1/2 2 x-x²+6<0 (x+2)(-x+3)<0 x<-2 或 x>3
3 x²+x+3>=0 (x+1/2)²+11/4>=0 x∈R 4 x^2+x-6<0 (x+3)(x-2)<0 -3<x<2
5 2x^2+3x-6<3x^2+x-1
x²-2x+5>0 (x-1)²+4>0 x∈R
6 -x^2-3x+10≥0 (x+5)(-x+2)>=0 -5<=x<=2
3 x²+x+3>=0 (x+1/2)²+11/4>=0 x∈R 4 x^2+x-6<0 (x+3)(x-2)<0 -3<x<2
5 2x^2+3x-6<3x^2+x-1
x²-2x+5>0 (x-1)²+4>0 x∈R
6 -x^2-3x+10≥0 (x+5)(-x+2)>=0 -5<=x<=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解1. 由原式得x^2≧1/4 解得x≧1/2或x≦-1/2
解2 由原式得x^2-x-6>0 得(x-3)(x+2)>0 解得x>3或x<-2
解3 由原式得(x+1/2)^2≧-3-1/4 由于任何数的平方大于或等于零,故解得x属于任何实数
解4 由原式得(x-2)(x+3)<0 解得-3<x<2
解5 由原式得x^2-2x+5>0 得(x-1)^2>-1 由于任何数的平方大于或等于零 故解得x属于任何实数
解6 由原式得x^2+3x-10≦0 得(x-2)(x+5)≦0 解得-5≦x≦2
解2 由原式得x^2-x-6>0 得(x-3)(x+2)>0 解得x>3或x<-2
解3 由原式得(x+1/2)^2≧-3-1/4 由于任何数的平方大于或等于零,故解得x属于任何实数
解4 由原式得(x-2)(x+3)<0 解得-3<x<2
解5 由原式得x^2-2x+5>0 得(x-1)^2>-1 由于任何数的平方大于或等于零 故解得x属于任何实数
解6 由原式得x^2+3x-10≦0 得(x-2)(x+5)≦0 解得-5≦x≦2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询