如图,已知平行四边形ABCD中,AB=8cm,BC=6cm,∠A=45,点P从点A沿AB边向点B移动,点Q从点B沿BC边向点C移 10
如图,已知平行四边形ABCD中,AB=8cm,BC=6cm,∠A=45,点P从点A沿AB边向点B移动,点Q从点B沿BC边向点C移动,P、Q同时出发,速度都是1cm/s。(...
如图,已知平行四边形ABCD中,AB=8cm,BC=6cm,∠A=45,点P从点A沿AB边向点B移动,点Q从点B沿BC边向点C移动,P、Q同时出发,速度都是1cm/s。(1)P、Q移动几秒时,△PBQ为等腰三角形?(2)设S△PBQ=y,请写出y(cm^2)与P、Q点移动时间x(S)之间的函数关系式
展开
展开全部
(1)解:设P、Q移动x秒时,△PBQ为等腰三角形。
8-x=x
x=4
(2)解:作QE⊥AB交AB延长线于E。
∵四边形ABCD是平行四边形
∴AD∥BC
∴∠QBE=∠A=45°
又∵QE⊥AB
∴∠E=90°
∴∠BQE=45°
∴∠QBE=∠BQE
∴BE=QE
由(1)可知,BQ长x*1=xcm,PB长(8-x)cm。
在RT△BQE中,∵△BQE为等腰三角形
∴BE=x/√2=√2x/2=QE
∴S△PQE=(8-x)*√2x/2*0.5=2√2x-√2/4x²
即y=2√2x-√2/4x²(0<x≤6)
绝对对的,老师讲过。这可是我自己写的呦
8-x=x
x=4
(2)解:作QE⊥AB交AB延长线于E。
∵四边形ABCD是平行四边形
∴AD∥BC
∴∠QBE=∠A=45°
又∵QE⊥AB
∴∠E=90°
∴∠BQE=45°
∴∠QBE=∠BQE
∴BE=QE
由(1)可知,BQ长x*1=xcm,PB长(8-x)cm。
在RT△BQE中,∵△BQE为等腰三角形
∴BE=x/√2=√2x/2=QE
∴S△PQE=(8-x)*√2x/2*0.5=2√2x-√2/4x²
即y=2√2x-√2/4x²(0<x≤6)
绝对对的,老师讲过。这可是我自己写的呦
展开全部
1)△PBQ为等腰三角形,即PB=BQ。设P点走过的路程为Lp,Q点走过的路程为Lq,那么PB=AB-Lp,BQ=Lq.若PB=BQ,则AB-Lp=Lq,Lp+Lq=AB,又知P、Q点走过的路程为速度1cm/s*时间t,则t*1+t*1=AB=8,解之得 t=4(s)。
2)由平行四边形性质可知,△PBQ(P与A点重合时)和△ABD的高相同,又知∠A=45,则△ABD为等腰直角三角形,△ABD的高等于√2/2AB,则,△PBQ(P与A点重合时)的高也是√2/2AB,但随着P点移动,PB<AB,此时由P点做平行线交△ABD的高于E点,此时可知,△PBQ的高=△PEB的高=√2/2PB,由此可知,若S△PBQ=y,P、Q点移动时间=x,则y=1/2*BQ*h(△PBQ的高)=1/2*Lq*√2/2(AB-Lp)=1/2*(x*1)*√2/2(AB-x*1)=1/2*x*√2/2(8-x)=2√2x-√2/4x²
2)由平行四边形性质可知,△PBQ(P与A点重合时)和△ABD的高相同,又知∠A=45,则△ABD为等腰直角三角形,△ABD的高等于√2/2AB,则,△PBQ(P与A点重合时)的高也是√2/2AB,但随着P点移动,PB<AB,此时由P点做平行线交△ABD的高于E点,此时可知,△PBQ的高=△PEB的高=√2/2PB,由此可知,若S△PBQ=y,P、Q点移动时间=x,则y=1/2*BQ*h(△PBQ的高)=1/2*Lq*√2/2(AB-Lp)=1/2*(x*1)*√2/2(AB-x*1)=1/2*x*√2/2(8-x)=2√2x-√2/4x²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.当PB=BQ,即为等腰三角形(因为∠B>90,所以PB不可能等于PQ)
PB=AB-X=8-X,BQ=X,8-X=X,X=4
即P、Q移动四秒时,BPQ为等腰三角形
2.当P、Q移动X秒时,△BPQ的底=8-x,,△BPQ高=x/√2
所以y=(8-x)x/2√2=2√2x-√2/4x²
PB=AB-X=8-X,BQ=X,8-X=X,X=4
即P、Q移动四秒时,BPQ为等腰三角形
2.当P、Q移动X秒时,△BPQ的底=8-x,,△BPQ高=x/√2
所以y=(8-x)x/2√2=2√2x-√2/4x²
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.当PB=BQ,即为等腰三角形
因为∠B>90,所以PB不可能等于PQ
PB=AB-X=8-X,BQ=X,8-X=X,X=4
即P、Q移动四秒时,BPQ为等腰三角形
2.当P、Q移动X秒时,△BPQ的底=8-x,,△BPQ高=x/√2
所以y=(8-x)x/2√2=2√2x-√2/4x^2
因为∠B>90,所以PB不可能等于PQ
PB=AB-X=8-X,BQ=X,8-X=X,X=4
即P、Q移动四秒时,BPQ为等腰三角形
2.当P、Q移动X秒时,△BPQ的底=8-x,,△BPQ高=x/√2
所以y=(8-x)x/2√2=2√2x-√2/4x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)设t秒时,三角形PBQ为等腰三角形
8-t=t(0<t<6)
t=4
答:当移动时间为4秒时,三角形PBQ为等腰三角形.
(2)y=1/2 (8-X)X Sin135° (0<X<6)
y=2√2X-√2X²/2
1.设时间为x秒,则8-x=x,所以答案为4秒.2.S=1/2(8-x)x再乘以2分之根号2,其中0<x<6,化简即可.3.将2式配方,得最大值为4倍根号2,而平行四边形的那个为8倍根号2,所以不能等于.
8-t=t(0<t<6)
t=4
答:当移动时间为4秒时,三角形PBQ为等腰三角形.
(2)y=1/2 (8-X)X Sin135° (0<X<6)
y=2√2X-√2X²/2
1.设时间为x秒,则8-x=x,所以答案为4秒.2.S=1/2(8-x)x再乘以2分之根号2,其中0<x<6,化简即可.3.将2式配方,得最大值为4倍根号2,而平行四边形的那个为8倍根号2,所以不能等于.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询