设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.

设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.... 设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系. 展开
lry31383
高粉答主

推荐于2016-12-01 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: (α1,α1+α2,α2+α3)=(α1,α2,α3)P
P =
1 1 0
0 1 1
0 0 1

因为 |P|=1≠0, 所以P可逆.
所以 α1,α2,α3 与 α1,α1+α2,α2+α3 等价.
所以 r(α1,α1+α2,α2+α3) = r(α1,α2,α3) = 3.
且 Ax=0 的解可由 α1,α1+α2,α2+α3 线性表示.
故 α1,α1+α2,α2+α3 是Ax=0 的基础解系.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式