函数y=x^2 -x^3的拐点
1个回答
推荐于2017-12-16 · 知道合伙人教育行家
关注
展开全部
y'=2x-3x^2
y"=2-6x
令y"=0
2-6x=0
-6x=-2
x=1/3
所以函数的拐点是x=1/3
拐点的求法
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
例如,y=x^3,y'=3x^2,y''=6x,解出x=0时,y'=0,y''=0:y在(负无穷大,0)上为增函数,y''<0,函数曲线为凸函数;y在(0,正无穷大)上为增函数,函数y''>0,函数曲线为凹函数。但y全区间函数为增函数,拐点在这里说明的只是函数曲线凹凸分界点。
y"=2-6x
令y"=0
2-6x=0
-6x=-2
x=1/3
所以函数的拐点是x=1/3
拐点的求法
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
例如,y=x^3,y'=3x^2,y''=6x,解出x=0时,y'=0,y''=0:y在(负无穷大,0)上为增函数,y''<0,函数曲线为凸函数;y在(0,正无穷大)上为增函数,函数y''>0,函数曲线为凹函数。但y全区间函数为增函数,拐点在这里说明的只是函数曲线凹凸分界点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询