将曲线的一般式方程化为参数式方程,要过程

 我来答
匿名用户
2017-03-04
展开全部
基本思路:把曲线投影到坐标面上,比如xoy面,投影曲线是平面上的曲线,如果是圆、椭圆、双曲线等等,就可以求出其参数方程,这样就得到了x,y的参数方程,回代,求z。

本题:曲线在xoy面上的投影曲线是y=x,是直线,所以换个坐标面,比如zox面,消去y,得2x²+z²=4,z²/4+x²/2=1,参数方程是z=2cost,x=√2sint,0≤t≤2π。代入y=x得y=√2sint。所以空间曲线的参数方程是x=y=√2sint,z=2cost,0≤t≤2π。

注:参数方程不唯一。
追问
为什么曲线在xoy面上的投影曲线是y=x?
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式