lim x->0(∫e^t^2dt)^2/∫te^2t^2dt 过程看不懂 图片是老师给的
具体回答如下:
lim( ∫e^t^2dt)^2/ ∫e^2t^2dt x~0 (积分上限为x,积分下限为0)=0
用洛必达法则:
lim( ∫e^t^2dt)^2/ ∫e^2t^2dt
=lim2e^(x^2)∫e^t^2dt)/e^(2x^2)
=lim2∫e^t^2dt)/e^(x^2)
=0
极限函数的性质:
和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
具体回答如下:
lim( ∫e^t^2dt)^2/ ∫e^2t^2dt x~0 (积分上限为x,积分下限为0)=0
用洛必达法则:
lim( ∫e^t^2dt)^2/ ∫e^2t^2dt
=lim2e^(x^2)∫e^t^2dt)/e^(2x^2)
=lim2∫e^t^2dt)/e^(x^2)
=0
极限函数的性质:
和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。