求lim X趋向于0(1-2x)的X次方分之一的极限.计算过程
2个回答
展开全部
lim(x→0)(1-2x)^(1/x)
=lim(x→0)(1-2x)^{[-1/(2x)]*(-2x)*(1/x)}
=e^[lim(x→0)(-2x/x)]
=e^(-2)
=1/e²
【说明】lim(x→0)(1+x)^(1/x)=e公式的应用。
=lim(x→0)(1-2x)^{[-1/(2x)]*(-2x)*(1/x)}
=e^[lim(x→0)(-2x/x)]
=e^(-2)
=1/e²
【说明】lim(x→0)(1+x)^(1/x)=e公式的应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
limx—0(1-2x)1/x= limx—0(1-2x)-2/2x=e-2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询