数学矩阵问题 设矩阵
A=1-11-11-11-11求正交矩阵T使T的-1次方AT=T'AT为对角矩阵。(要求写出正交矩阵T和相应的对角矩阵T的-1次方AT=T'AT)。...
A= 1 -1 1
-1 1 -1
1 -1 1
求正交矩阵T使T的-1次方AT=T'AT为对角矩阵。
(要求写出正交矩阵T 和相应的对角矩阵 T的-1次方AT=T'AT )。 展开
-1 1 -1
1 -1 1
求正交矩阵T使T的-1次方AT=T'AT为对角矩阵。
(要求写出正交矩阵T 和相应的对角矩阵 T的-1次方AT=T'AT )。 展开
1个回答
展开全部
解: |A-λE| =
1-λ -1 1
-1 1-λ -1
1 -1 1-λ
r1-r3
-λ 0 λ
-1 1-λ -1
1 -1 1-λ
第1行提出λ
-1 0 1
-1 1-λ -1
1 -1 1-λ
r2-r1,r3+r1
-1 0 1
0 1-λ -2
0 -1 2-λ
= λ*(-1)*[(1-λ)(2-λ)-2]
= -λ(λ^2-3λ)
= -λ^2(λ-3).
所以 A 的特征值为 0,0,3.
AX=0 的基础解系为: a1=(1,1,0)', a2=(1,-1,-2)'.
(A-3E)X=0 的基础解系为: a3=(1,-1,1)'
单位化(已经正交)得:
b1=(1/√2,1/√2,0)', b2=(1/√6,-1/√6,-2/√6)', b3=(1/√3,-1/√3,1/√3)'
令 T = (b1,b2,b3) =
1/√2 1/√6 1/√3
1/√2 -1/√6 -1/√3
0 -2/√6 1/√3
则T为正交矩阵, 且 T^-1AT = diag(0,0,3).
1-λ -1 1
-1 1-λ -1
1 -1 1-λ
r1-r3
-λ 0 λ
-1 1-λ -1
1 -1 1-λ
第1行提出λ
-1 0 1
-1 1-λ -1
1 -1 1-λ
r2-r1,r3+r1
-1 0 1
0 1-λ -2
0 -1 2-λ
= λ*(-1)*[(1-λ)(2-λ)-2]
= -λ(λ^2-3λ)
= -λ^2(λ-3).
所以 A 的特征值为 0,0,3.
AX=0 的基础解系为: a1=(1,1,0)', a2=(1,-1,-2)'.
(A-3E)X=0 的基础解系为: a3=(1,-1,1)'
单位化(已经正交)得:
b1=(1/√2,1/√2,0)', b2=(1/√6,-1/√6,-2/√6)', b3=(1/√3,-1/√3,1/√3)'
令 T = (b1,b2,b3) =
1/√2 1/√6 1/√3
1/√2 -1/√6 -1/√3
0 -2/√6 1/√3
则T为正交矩阵, 且 T^-1AT = diag(0,0,3).
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询