带括号连减算术简便运算可以按从左往右按顺序计算;
也可以把减数加起来,再从被减数里减去;
还可以先减去后面的减数,再减去前面的。
选择算法的依据:根据算式中数据的特点,和使用范围选择合适的算法,以连减的简便计算为原则。
计算时,如果减去的两个数能凑成整十数或整百数,那就选择第二种算法,减去这两个数的和;如果减去的一个数后,能得到整十数或整百数,那就运用第三种算法,交换位置。
举例:
238-46-54
=238-(46+54)=238-100=138
扩展资料
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
2023-08-25 广告
可以按从左往右按顺序计算;
也可以把减数加起来,再从被减数里减去;
还可以先减去后面的减数,再减去前面的。
选择算法的依据:根据算式中数据的特点,和使用范围选择合适的算法,以连减的简便计算为原则。
计算时,如果减去的两个数能凑成整十数或整百数,那就选择第二种算法,减去这两个数的和;如果减去的一个数后,能得到整十数或整百数,那就运用第三种算法,交换位置。
举例:
238-46-54
=238-(46+54)=238-100=138