1个回答
展开全部
数列{bn},bn=|(a^n)/(n!)|
令a>0,可去掉绝对值
存在正整数t>a
任意c>0,令N>{ln[c/(a^t)]}/ln(a/t)+t=(lnc-tlna)/(lna-lnt)+t
当n>N
(a^n)/(n!)-0=(a^t)/(t!)*(a^(n-t))/(n!/t!)
令a>0,可去掉绝对值
存在正整数t>a
任意c>0,令N>{ln[c/(a^t)]}/ln(a/t)+t=(lnc-tlna)/(lna-lnt)+t
当n>N
(a^n)/(n!)-0=(a^t)/(t!)*(a^(n-t))/(n!/t!)
追问
???
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |