已知:如图,在△ABC中外切于圆I,D、E、F是切点。 10
问:若连接EF,则△DEF是什么三角形(从角的方面考虑)?并说明理由。求解,希望大家帮帮忙,本人甚是愚笨,望理由步骤详细。谢谢问:若连接EF,则△DEF是什么三角形(从角...
问:若连接EF,则△DEF是什么三角形(从角的方面考虑)?并说明理由。
求解,希望大家帮帮忙,本人甚是愚笨,望理由步骤详细。谢谢
问:若连接EF,则△DEF是什么三角形(从角的方面考虑)?并说明理由。 展开
求解,希望大家帮帮忙,本人甚是愚笨,望理由步骤详细。谢谢
问:若连接EF,则△DEF是什么三角形(从角的方面考虑)?并说明理由。 展开
展开全部
不是解释过了吗?答案是互补。
连结IE,IF,ID
由于内切,三角形BIF全等于三角形BID,三角形CIE全等于三角形CID
所以角BIF=角BID,角CIE=角CID
所以角EIF(超过180度的那个角)=BIF+BID+CIE+CID=2(BID+CID)=2BIC
因为IE=IF=ID
所以IFD=IDF,IED=IDE
那么对于四边形DEIF,角IFD+IED+FDE+EIF(超过180那个)=2FDE+2BIC=360
则FDE+BIC=180
连结IE,IF,ID
由于内切,三角形BIF全等于三角形BID,三角形CIE全等于三角形CID
所以角BIF=角BID,角CIE=角CID
所以角EIF(超过180度的那个角)=BIF+BID+CIE+CID=2(BID+CID)=2BIC
因为IE=IF=ID
所以IFD=IDF,IED=IDE
那么对于四边形DEIF,角IFD+IED+FDE+EIF(超过180那个)=2FDE+2BIC=360
则FDE+BIC=180
追问
不是的,请你看清问题好吗。 不是 证明 ∠FDE与∠BIC互补
问:若连接EF,则△DEF是什么三角形(从角的方面考虑)?并说明理由。
追答
不明白你的意思,就是个普通的三角形,没有什么特殊之处!!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询