定义在(-1,1)上的函数F(X)满足:对任意X,Y属于(-1,1),都有F(X)加F(Y)等于f(X+Y除以(1+XY))

1求证函数F(X)是奇函数。2,若当X属于(-1,0)时,有F(X)大于0.求证:F(X)在(-1,1)上是减函数。... 1求证函数F(X)是奇函数。
2,若当X属于(-1,0)时,有F(X)大于0.求证:F(X)在(-1,1)上是减函数。
展开
喜欢戴耳环
2011-10-22 · TA获得超过158个赞
知道答主
回答量:137
采纳率:0%
帮助的人:98.4万
展开全部
f(x)+f(y)=f[(x+y)/1+xy]定义在(-1,1)都满足 所以 f(0)+f(0)=f(0) 所以 f(0)=0
再 X取-x y取-x 即 f(-x)+f(x)=f(0) 所以函数f(x)为奇函数

第二问 取 x1﹤ x2 并且属于(-1,0)
所以 f(x1)-f(x2) =f[(x1+x2)/1+x1*x2] 而[(x1+x2)/1+x1*x2] 也属于(-1,0)
所以 f[(x1+x2)/1+x1*x2] ﹥0 所以 f(x1)-f(x2) ﹥0 所以f(x)在(-1,0)为减函数
由于f(x)为奇函数 所以F(X)在(-1,1)上是减函数
更多追问追答
追问
第2小问知道做吗?所以  f(x1)-f(x2) =f[(x1+x2)/1+x1*x2] 这一步我不理解,应该是F(X1-X2/1+X1X2)吧?我不懂,可以讲详细些吗?
追答
对不起啊   写错了  第二步我再做  

取 x1﹤ x2 并且属于(-1,0)
所以 f(x1)-f(x2) =f(x1)+f(-x2)
= f[(x1-x2)/1+x1*-x2] 而[(x1-x2)/1+x1*-x2]也属于(-1,0)
所以f[(x1-x2)/1+x1*-x2] ﹥0 所以 f(x1)-f(x2) ﹥0 所以f(x)在(-1,0)为减函数
由于f(x)为奇函数 所以F(X)在(-1,1)上是减函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式