∫1/x²dx等于几?
解题过程如下:
令x = tanθ,dx = d(tanθ)
N = ∫ √(1 + x²) dx
= ∫ secθ d(tanθ)
= secθtanθ - ∫ tanθ d(secθ)
= secθtanθ - ∫ tan²θsecθ dθ
= secθtanθ - ∫ (sec²θ - 1)secθ dθ
= secθtanθ - N + ∫ secθ dθ
2N = secθtanθ + ln|secθ + tanθ| + C'
N = (x/2)√(1 + x²) + (1/2)ln|x + √(1 + x²)| + C
即∫ √(1 + x²) dx = (x/2)√(1 + x²) + (1/2)ln|x + √(1 + x²)| + C
扩展资料
积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a2+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分。
含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
求函数积分的方法:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
2024-04-11 广告
∫x^ndx=1/(n+1) x^(n+1)+C
那么这里的
∫1/x²dx= -1/x+C
C为常数