1个回答
2018-07-10
展开全部
这个用二元函数的泰勒展开式就很好理解及证明了: f(x,y) = f(a,b) + f'x(a,b)(x - a) + f'y(a,b)(y - b) + 1/2*[f"xx(a,b)(x-a)^2 + f"yy(a,b)(y-b)^2 + 2f"xy(a,b)(x-a)(y-b)] + h ,这里h为余项 =f(a,b) + f'x(a,b)(x - a) + f'y(a,b)(y - b) + 1/2*[A(x-a)^2 + C(a,b)(y-b)^2 + 2B(x-a)(y-b)] + h 由于f'x(a,b)=f'y(a,b)=0, 因此上式=f(a,b)+1/2*[A(x-a)^2 + C(a,b)(y-b)^2 + 2B(x-a)(y-b)] + h 在极小值点的邻域,其值都比它大.所以极小值点相当于在邻域内A(x-a)^2 + C(a,b)(y-b)^2 + 2B(x-a)(y-b) 恒大于0. 把它看成是x-a的2次式,恒大于0,表明A>0,且判别式小于0.即为(2B)^2-4AC0
追问
你在干嘛 我问的不是这个
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询