2个回答
展开全部
解:原式=lim(x->0){(1+x²)^[(1/x²)*(x²/sin²x)*(cosx²)]}
=lim(x->0){[(1+x²)^(1/x²)]^[(x²/sin²x)*(cosx²)]
={lim(x->0)[(1+x²)^(1/x²)]}^{lim(x->0)[(x²/sinx²)*(cosx²)]}
=e^{lim(x->0)[(x²/sinx²)*(cosx²)]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^[lim(x->0)(x²/sinx²)*lim(x->0)(cos²x)]
=e^(1*1) (应用重要极限lim(z->0)(sinz/z)=1)
=e
=lim(x->0){[(1+x²)^(1/x²)]^[(x²/sin²x)*(cosx²)]
={lim(x->0)[(1+x²)^(1/x²)]}^{lim(x->0)[(x²/sinx²)*(cosx²)]}
=e^{lim(x->0)[(x²/sinx²)*(cosx²)]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^[lim(x->0)(x²/sinx²)*lim(x->0)(cos²x)]
=e^(1*1) (应用重要极限lim(z->0)(sinz/z)=1)
=e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询