求解答数列极限和函数极限的关系,特别是下

 我来答
bill8341
高粉答主

2017-12-28 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3690万
展开全部
函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这个变化过程中的函数极限。
主要有两种情形:
1. 自变量X任意的接近于有限值X0 或者说趋于有限值X0 对应函数值的变化情形
2. x的绝对值趋于无穷,对应于函数值的变化。
可以把数列看成是自变量为N的函数,数列的极限就是N趋于正无穷时数列收敛的值。可以说是函数极限的一个特殊情况。

而且数列的N取值是正整数,一般函数的X取值是连续的。这样,可以理解,数列具有离散性。而函数,有连续型的,也有离散型的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式