已知函数f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f′﹙x﹚.

alvinlinful
2011-10-22 · TA获得超过1175个赞
知道小有建树答主
回答量:427
采纳率:0%
帮助的人:628万
展开全部
式1:af(x)+bf(1/x)=c/x
取x=1/x,得
式2:bf(x)+af(1/x)=cx
式1等式两边同时取导:
式3:af‘(x)-bf’(1/x)(1/x²)=-c/x²
式2等式两边同时取导:
式4:bf‘(x)-af’(1/x)(1/x²)=c
现在要消去f’(1/x),所以,由式3*a-式4*b得
(a²-b²)f'(x)=-c/x²-c
由于|a|≠|b|,所以a²-b²≠0
得f'(x)=-(c/x²+c)/(a²-b²)
匿名用户
2011-10-22
展开全部
将函数中x换1/x,1/x换x,联立方程组可解出f(x),再依据公式求f'(x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式