1个回答
展开全部
函数f(x)在x0处连续,一个是该处有极限,一个是该极限等于该点的函数值.
例如:
设f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:
当a,b为何值时,f(x)在x=0处的极限存在?
当a,b为何值时,f(x)在x=0处连续?
注:f(x)=xsin 1/x +a, x< 0
b+1, x=0
X^2-1, x>0
解:f(0)=b+1
左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a
左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1
f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2
例如:
设f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:
当a,b为何值时,f(x)在x=0处的极限存在?
当a,b为何值时,f(x)在x=0处连续?
注:f(x)=xsin 1/x +a, x< 0
b+1, x=0
X^2-1, x>0
解:f(0)=b+1
左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a
左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1
f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询